CBSE X 2025

Chapter and Topic-Wise Solved Papers 2011-2024

Mathematics [Standard \& Basic] | Science Social Science | English Language \mathcal{E} Literature

CBSE X 2025

Chapter and Topic-Wise

 Solved Papers 2011-2024
Mathematics (Standard \& Basic) | Science Social Science | English Language \mathcal{E} Literature

\% 6 Career
Launcher

```
Title : CBSE Class X (Mathematics / Science / Social Science / English) :
        Chapter and Topic-wise Solved Papers 2011-2024
Language : English
Editor's Name : Amit Singh
Copyright © : 2024 CLIP
```

No part of this book may be reproduced in a retrieval system or transmitted, in any form or by any means, electronics, mechanical, photocopying, recording, scanning and or without the written permission of the Author/Publisher.

Typeset \& Published by :

Career Launcher Infrastructure (P) Ltd.
A-45, Mohan Cooperative Industrial Area, Near Mohan Estate Metro Station, New Delhi - 110044
Marketed by :
G.K. Publications (P) Ltd.

Plot No. 63, Sector-27A, Near Sector - 28 Metro Station, Faridabad, Haryana-121003
ISBN : 978-93-56816-82-4
Printer's Details: Printed in India, New Delhi.

For product information :

Visit www.gkpublications.com or email to gkp@gkpublications.com

CONTENTS

Mathematics (Standard \& Basic)

1.1-1.16
1.1
1.2
1.3
1.8
1.9
1.9
1.10
1.11
1.14
1.15
2.17-2.32
2.17 [Topic 1] Zeroes of a Polynomial and Relationship between Zeroes and Coefficients of Quadratic Polynomials
2.18
2.19

Previous Years' Examination Questions Topic 1
Solutions
2.22 Multiple Choice Questions
2.22

Solutions
2.24
2.26
[Topic 2] Problems on Polynomials
Previous Years' Examination Questions Topic 2
2.27

Solutions
2.30
2.31
3.33-3.58
3.33
3.34
3.36
3.41
3.42
3.43
3.44
3.47
3.56
3.57
4.59-4.84
4.59 [Topic 1] Basic Concept of Quadratic Equations
4.60 Previous Years' Examination Questions Topic 1

4.60	Previous Y
4.62	Solutions

4.60	Previous Y
4.62	Solutions

4.71 Multiple Choice Questions
4.71

Real Numbers
[Topic 1] Euclid's Division Lemma and Fundamental Theorem of Arithmetic
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Irrational Numbers, Terminating and Non-Terminating Recurring Decimals
Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions
Polynomials

Multiple Choice Questions
Solutions
Linear Equation
[Topic 1] Linear Equations (Two Variables)
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Different Methods to Solve Quadratic Equations
Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions
4.59-4.84 Quadratic Equations

Solutions
4.72
4.72
4.74
4.82
4.82
4.83
4.83
5.85-5.108
5.85
5.86
5.87
5.93
5.94
5.95
5.95
5.96
5.106
5.106
5.106
5.107
6.109-6.138
6.109
6.110
6.112
6.124
6.124
6.126
6.126
6.127
6.136
6.137
7.139-7.168
7.140
7.147
7.165
7.166
8.169-8.194
8.169
8.176
8.190
8.192
9.195-9.204
9.195
9.196
9.196
[Topic 2] Roots of a Quadratic Equation
Previous Years' Examination Questions Topic 2
Solutions
Value Based Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions
Arithmetic Progression
[Topic 1] Arithmetic Progression
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Sum of n Terms of an A.P.
Previous Years' Examination Questions Topic 2
Solutions
Value Based Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions
Coordinate Geometry
[Topic 1] Distance between two Points and Section Formula
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Centroid and Area of Triangle
Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions
Triangles
Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions
Circles
Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions
Constructions
[Topic 1] Construction of a Line Segment
Previous Years' Examination Questions Topic 1
Solutions
9.196
9.197
9.197
9.199
9.200
9.201
10.205-10.228
10.205
10.206
10.208
10.214
10.215
10.216
10.216
10.218
10.226
10.227
11.229-11.254 11.230
11.234
11.251
11.252
12.255-12.276
12.257
12.262
12.273
12.274
13.277-13.308
13.277
13.279
13.281
13.289
13.290
13.291
13.291
13.292
13.296
13.297
13.298
13.298
13.299
13.305
13.305
13.307
13.307
[Topic 2] Construction of a Tangent to a Circle from a Point Outside it. Previous Years' Examination Questions Topic 2 Solutions
[Topic 3] Construction of a triangle Similar to a given Triangle
Previous Years' Examination Questions Topic 3
Solutions
Introduction to Trigonometry
[Topic 1] Trigonometric Ratios
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Trigonometric Identities
Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions
Some Applications of Trigonometry
Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions
Areas Related to Circles
Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions
Surface Areas and Volumes
[Topic 1] Surface Area \& Volume of a Solid
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Conversion of Solid
Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions
[Topic 3] Frustum of a Right Circular Cone
Previous Years' Examination Questions Topic 3
Solutions
Value Based Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions
14.309-14.334
14.309
14.310
14.315
14.323
14.323
14.324
14.325
14.328
14.333
14.334
15.335-15.350
15.336
15.339
15.347
15.349

Statistics

[Topic 1] Mean, Median and Mode
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Cumulative Frequency Distribution
Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions
Probability
Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions

Science

1.1-1.16

1.1
1.2
1.4
1.6
1.10
1.12
1.14
1.15
1.16
1.16
2.17-2.30
2.19
2.24
2.29
2.30
2.30
2.30
3.31-3.46
3.31
3.33
3.35
3.37
3.38
1.6 Multiple Choice Questions
1.7 Solutions
1.8 [Topic 2] Types of Chemical Reactions, Corrosion and Rancidity

Chemical Reaction and Equations

[Topic 1] Chemical Reactions \& Equations
Previous Years' Examination Questions Topic 1
Solutions

Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions
Assertion and Reason
Answer Key
Acids, Bases and Salts
Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions
Assertion and Reason
Answer Key
Metals and Non-metals
[Topic 1] Metal, Non-metals \& Their Properties
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
3.39 [Topic 2] Ionic Compound \& Metallurgy
3.40 Previous Years' Examination Questions Topic 2
3.42 Solutions
3.45 Multiple Choice Questions
3.46 Solutions
3.46 Assertion and Reason
3.46 Answer Key
4.47-4.66 Carbon and its Compounds
$4.48 \quad$ [Topic 1] Carbon and Its Properties
4.49 Previous Years' Examination Questions Topic 1
4.51

Solutions
4.53 Multiple Choice Questions
4.54 Solutions
4.55 [Topic 2] Carbon Compounds, Soaps \& Detergents
4.58 Previous Years' Examination Questions Topic 2
4.60 Solutions
4.65 Multiple Choice Questions
4.66 Solutions
4.66 Assertion and Reason
4.66 Answer Key
5.67-5.78
5.70

Periodic Classification of Elements
5.72

Previous Years' Examination Questions
ons
5.76 Multiple Choice Questions
5.77

Solutions
6.79-6.102 Life Processes
6.79 [Topic 1] Nutrition
6.82 Previous Years' Examination Questions Topic 1
6.86 Solutions
6.88 Multiple Choice Questions
6.89 Solutions
6.90 [Topic 2] Respiration, Circulation \& Excretion
6.92 Previous Years' Examination Questions Topic 2
6.95 Solutions
6.100 Multiple Choice Questions
6.101 Solutions
6.102 Assertion and Reason
6.102

Answer Key
7.103-7.114

Control and Coordination
7.103
[Topic 1] Plant Hormones and Movement
7.104 Previous Years' Examination Questions Topic
7.104 Solutions
7.105 Multiple Choice Questions
7.106 Solutions
7.107 [Topic 2] Nervous System in Animals
7.110 Previous Years' Examination Questions Topic 2
7.111
7.113

Solutions
7.114

Multiple Choice Questions
7.114

Solutions
7.114

Assertion and Reason
Answer Key
8.115-8.136

How do Organisms Reproduce
8.115
[Topic 1] Basics of Reproduction
8.116
8.118

Previous Years' Examination Questions Topic 1
Solutions
8.119

Multiple Choice Questions
8.120

Solutions
8.121
[Topic 2] Sexual Reproduction in Plants
8.122

Previous Years' Examination Questions Topic 2
8.124

Solutions
8.129

Multiple Choice Questions
8.130

Solutions
8.131
8.132
[Topic 3] Reproduction in Human Beings
8.133
8.135

Previous Years' Examination Questions Topic 3
Solutions
Multiple Choice Questions
8.136

Solutions
8.136

Assertion and Reason
8.136

Answer Key
9.137-9.150

Heredity and Evolution
9.137 [Topic 1] Heredity \& Mendel's Contribution
9.139 Previous Years' Examination Questions Topic 1
9.141 Solutions
9.143 Multiple Choice Questions
9.144

Solutions
9.145
[Topic 2] Evolution
9.146 Previous Years' Examination Questions Topic 2
9.147 Solutions
9.149 Multiple Choice Questions
9.150

Solutions
10.151-10.182

Light-Reflection and Refraction
10.151
10.154
[Topic 1] Reflection of Light, Image formed by Spherical Mirrors
10.156

Previous Years' Examination Questions Topic 1
10.158

Solutions
10.159

Multiple Choice Questions
Solutions
(x)
10.160
10.161
10.170
10.181
10.182
10.182
10.182
11.183-11.198
11.183
11.186
11.187
11.190
11.190
11.190
11.192
11.194
11.197
11.198
11.198
11.198
12.199-12.222
12.203
12.211
12.221
12.222
12.222
12.222
13.223-13.236
13.226
13.229
13.234
13.235
13.236
13.236
14.237-14.246
14.237
14.239
14.239
14.240
14.240
14.241
14.243
14.243
[Topic 2] Refraction, Lenses, Power of Lens
Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions
Assertion and Reason
Answer Key
Human Eye and Colourful World
[Topic 1] Structure of Eye \& Eye Defects
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Dispersion \& Refraction
Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions
Assertion and Reason
Answer Key
Electricity
Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions
Assertion and Reason
Answer Key
Magnetic Effects of Electric Current
Previous Years' Examination Questions
Solutions
Multiple Choice Questions
Solutions
Assertion and Reason
Answer Key
Sources of Energy
[Topic 1] Source of Energy
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Non Conventional Sources of Energy
Previous Years' Examination Questions Topic 2
Solutions
14.245
14.246
14.246
15.247-15.258
15.247
15.249
15.250
15.252
15.253
15.254
15.255
15.256
15.257
15.257
16.259-16.268
16.259
16.261
16.261
16.263
16.263
16.264
16.265
16.266
16.267
16.267
14.244

Multiple Choice Questions

Solutions
Assertion and Reason
Answer Key
Our Environment
[Topic 1] Ecosystem \& Food Chain
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Ozone Layer and Its Depletion
Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions
Management of Natural Resources
[Topic 1] Natural Resources
Previous Years' Examination Questions Topic 1
Solutions
Multiple Choice Questions
Solutions
[Topic 2] Water Conservation
Previous Years' Examination Questions Topic 2
Solutions
Multiple Choice Questions
Solutions

Social Science

Unit I: History

India and the Contemporary World-II

1.3-1.14 The Rise of Nationalism in Europe

1.6 Previous Years' Examination Questions
1.9 Solutions
1.14 Multiple Choice Questions
1.14 Answer Keys
1.14 Fill in the Blanks
1.14 Solutions
1.14 True or False
1.14 Solutions
2.15-2.30 Nationalism in India
2.17 Previous Years' Examination Questions
2.21 Solutions
2.29 Multiple Choice Questions
2.29 Solutions
2.29 Fill in the Blanks
2.30 Solutions
2.30 True or False
2.30 Solutions
3.31-3.38 The Making of a Global World
3.33 Previous Years' Examination Questions
3.34 Solutions
3.37 Multiple Choice Questions
3.37 Answer Keys
3.37 Fill in the Blanks
3.38 Solutions
3.38 True or False
3.38 Solutions
4.39-4.46 The Age of Industrialization
4.41 Previous Years' Examination Questions
4.42 Solutions
4.45 Multiple Choice Questions
4.45 Answer Keys
4.46 Fill in the Blanks
4.46 Solutions
4.46 True or False
4.46 Solutions
5.47-5.54 Print Culture and the Modern World
5.49 Previous Years' Examination Questions
5.50 Solutions
5.53 Multiple Choice Questions
5.53 Answer Keys
5.54 Fill in the Blanks
5.54 Solutions
5.54 True or False
5.54 Solutions

Unit II: Geography

Contemporary India-II

$1.57-1.62$	Resources and Development
1.58	Previous Years' Examination Questions
1.59	Solutions
1.61	Multiple Choice Questions
1.62	Answer Keys
1.62	Fill in the Blanks
1.62	Solutions
1.62	True or False
1.62	Solutions

1.58 Previous Years' Examination Questions
1.59 Solutions
1.61 Multiple Choice Questions
1.62 Answer Keys
1.62 Fill in the Blanks
1.62 Solutions
1.62 Solutions
2.63-2.68 Forest and Wildilfe
2.64 Previous Years' Examination QuestionsSolutions2.64
2.65 Previous Years' Examination Questions
Solutions
Multiple Choice Questions2.66
2.67 Answer Keys
2.67 Fill in the Blanks
2.68 Solutions
2.68 True or False2.68
Solutions
3.69-3.74 Water Resources
3.70 Previous Years' Examination Questions3.71Solutions3.74 Multiple Choice Questions3.74
Answer Keys
3.74 Fill in the Blanks3.74
Solutions
3.74 True or False
3.74 Solutions4.75-4.84Agriculture
4.77 Previous Years' Examination Questions4.80Solutions
4.83 Multiple Choice Questions
4.84 Answer Keys
4.84 Fill in the Blanks
4.84 Solutions
4.84 True or False
4.84 Solutions
5.85-5.92 Minerals and Energy Resources
5.87 Previous Years' Examination Questions
Solutions Solutions5.88
5.92 Multiple Choice Questions5.92Answer Keys
5.92 Fill in the Blanks
5.92 Solutions
5.92 True or False
5.92
Solutions
Manufacturing Industries
6.95 Previous Years' Examination Questions6.96
Solutions
6.99 Multiple Choice Questions
6.100 Answer Keys
6.100 Fill in the BlanksSolutions
6.100 True or False
6.100 Solutions
7.101-7.106 Life Lines of National Economy7.102
Previous Years' Examination Questions7.103
Solutions7.106
Multiple Choice Questions
7.106
Answer Keys
7.106
Fill in the BlanksSolutions
7.106 Solutions7.106 True or False
7.106 Solutions
Unit III: Political Science
Democratic Politics-II

$1.109-1.114$	Power Sharing
1.110	Previous Years' Examination Questions
1.112	Solutions
1.114	Multiple Choice Questions
1.114	Answer Keys
1.114	Fill in the Blanks
1.114	Solutions
1.114	True or False
1.114	Solutions
$2.115-2.122$	Federalism
2.116	Previous Years' Examination Questions
2.119	Solutions
2.121	Multiple Choice Questions
2.121	Answer Keys
2.121	Fill in the Blanks
2.122	Solutions
2.122	True or False
2.122	Solutions
$3.123-3.130$	Democracy and Diversity
3.124	Previous Years' Examination Questions
3.126	Solutions
3.130	Multiple Choice Questions
3.130	Answer Keys
3.130	Fill in the Blanks
3.130	Solutions
$4.131-4.136$	Gender, Religion and Caste
4.133	Previous Years' Examination Questions
4.134	Solutions
4.136	Multiple Choice Questions
4.136	Answer Keys
4.136	Fill in the Blanks
4.136	Solutions
4.136	True or False
4.136	Solutions

1.114FederalismSolutions2.121Answer Keys. 121Solutions2.122 True or False3.123-3.130Democracy and Diversity
3.124Solutions
3.130Answer Keys
3.130Solutions
Gender, Religion and Caste. 134Solutions
. 136Answer Keys
4.136Solutions
Solutions
5.137-5.142 \mid Popular Struggles and Movements
5.138 Previous Years' Examination Questions
5.138

Solutions
5.140

Previous Years' Examination Questions
5.140

Solutions
5.142 Multiple Choice Questions
5.142 Answer Keys
5.142 Fill in the Blanks
5.142

Solutions
6.143-6.150

Political Parties
6.145

Previous Years' Examination Questions
6.146

Solutions
6.150

Multiple Choice Questions
6.150

Answer Keys
6.150 Fill in the Blanks
6.150

Solutions
6.150 True or False
6.150

Solutions
7.151-7.156
7.153
7.153

Solutions
7.155 Multiple Choice Questions
7.155 Answer Keys
7.155 Fill in the Blanks
7.155

Solutions
7.156

True or False
7.156
8.157-8.160

Challenges to Democracy
8.158

Previous Years' Examination Questions
8.158

Solutions
8.160 Multiple Choice Questions
8.160

Answer Keys

Unit IV: Economics

Understanding Economic Development

$1.163-1.168$	Development
1.164	Previous Years' Examination Questions
1.165	Solutions
1.168	Multiple Choice Questions

1.168 Answer Keys
1.168 Fill in the Blanks
1.168 Solutions
1.168 True or False
1.168 Solutions
2.169-2.176 Sectors of the Indian Economy
2.170 Previous Years' Examination Questions
2.172 Solutions
2.176 Multiple Choice Questions
2.176 Answer Keys
2.176 Fill in the Blanks
2.176 Solutions
2.176 True or False
2.176 Solutions
3.177-3.182 Money and Credit
3.178 Previous Years' Examination Questions
3.179 Solutions
3.182 Multiple Choice Questions
3.182 Answer Keys
3.182 Fill in the Blanks
3.182 Solutions
3.182 True or False
3.182 Solutions
4.183-4.190 Globalisation and the Indian Economy
4.184 Previous Years' Examination Questions
4.185 Solutions
4.189 Multiple Choice Questions
4.190 Answer Keys
4.190 Fill in the Blanks
4.190 Solutions
4.190 True or False
4.190 Solutions
5.191-5.194 Consumer Rights
5.192 Previous Years' Examination Questions
5.192 Solutions
5.194 Fill in the Blanks
5.194 Solutions

English Language \& Literature

SECTION A : READING

1.3-1.60 Unseen Passages
1.3 Factual Passages
1.13 Discursive Passages
1.24 Previous Years' Examination Questions
1.53 Solutions

SECTION B: WRITING \& GRAMMAR
1.63-1.78 Letter Writing
1.65 Previous Years' Examination Questions
1.68 Solutions
2.79-2.90 Story Writing
2.79 Previous Years' Examination Questions
2.82 Solutions
3.91-3.114 Grammar Items
3.97 Previous Years' Examination Questions
3.109 Solutions

SECTION C : LITERATURE TEXT BOOKS \& EXTENDED READING TEXT PROSE

1.117-1.123
1.117
1.119
1.120
1.120
1.121
2.124-2.130
2.124
2.126
2.127
2.127
2.127
3.131-3.139
3.131
3.133
3.133
3.133
3.133

A Letter to God - G.L. Fuentes
Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
NCERT Highlights
Solutions
Nelson Mandela:Long Walk to Freedom - Nelson Rolihlahla Mandela
Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
NCERT Highlights
Solutions
Two Stories About Flying
(a) His First Flight - Liam O' Flaherty

Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
NCERT Highlights
Solutions
3.136
3.137
3.137
3.137
3.138
4.140-4.148
4.140
4.142
4.143
4.143
4.144
5.149-5.154
5.149
5.151
5.152
5.152
5.152
6.155-6.160
6.155
6.157
6.157
6.157
6.158
7.161-7.172
7.161
7.162
7.163
7.163
7.163
7.166
7.167
7.167
7.167
7.168
7.169
7.170
7.171 7.171
8.173-8.179
8.173
(b) The Black Aeroplane - Fredrick Forsyth

Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
NCERT Highlights
Solutions
From the Diary of Anne Frank - Anne Frank
Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
NCERT Highlights
Solutions
The Hundred Dresses-I - El Bsor Ester
Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
NCERT Highlights
Solutions
The Hundred Dresses-II - El Bsor Ester
Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
NCERT Highlights
Solutions

Glimpses of India

(a) A Baker from Goa - Lucio Rodrigues

Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
NCERT Highlights
Solutions
(b) Coorg - Lokesh Abrol

Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
NCERT Highlights
Solutions
(c) Tea From Assam - Arun Kumar Datta

Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
Solutions
Mijbil the Otter - Gavin Maxwell
Extract Based Questions

8.175	Short Answer Type Questions
8.176	Long Answer Type Questions
8.176	NCERT Highlights
8.176	Solutions
$9.180-9.187$	Madam Rides the Bus - Vallikkannan
9.180	Extract Based Questions
9.182	Short Answer Type Questions
9.182	Long Answer Type Questions
9.183	NCERT Highlights
9.183	Solutions
$10.188-10.192$	The Sermon at Benares
10.188	Extract Based Questions
10.190	Short Answer Type Questions
10.190	Long Answer Type Questions
10.190	NCERT Highlights
10.190	Solutions
$11.193-11.198$	The Proposal - Anton Chekov
11.193	Extract Based Questions
11.195	Short Answer Type Questions
11.195	Long Answer Type Questions
11.195	NCERT Highlights
11.196	Solutions
POETRY	
$1.201-1.203$	The Dust of Snow - Robert Frost
1.201	Extract Based Questions
1.201	Short Answer Type Questions
1.202	Long Answer Type Questions
1.202	NCERT Highlights
1.202	Solutions
3.210	Solutions
$2.204-2.206$	Fire and Ice - Robert Frost
2.204	Extract Based Questions
2.204	Short Answer Type Questions
2.205	Long Answer Type Questions
2.205	NCERT Highlights
2.205	Solutions
$3.207-3.211$	A Tiger in the Zoo - Leslie Norris
3.208	Extract Based Questions
Short Answer Type Questions	
Long Answer Type Questions	
102	

4.212-4.216
4.212
4.214
4.214
4.214
4.214
5.217-5.220
5.217
5.218
5.218 Long Answer Type Questions
5.219 NCERT Highlights
5.219

Solutions
6.221-6.224
6.221

Amanda - Robin Klein
6.222

Extract Based Questions
6.222 Long Answer Type Questions
6.223 NCERT Highlights
6.223

Solutions
7.225-7.228 Animals - Walt Whitman
7.225 Extract Based Questions
7.226 Short Answer Type Questions
7.226 Long Answer Type Questions
7.226 NCERT Highlights
7.227

Solutions
8.229-8.232 The Trees - Adrienne Rich
8.229 Extract Based Questions
8.230 Short Answer Type Questions
8.230 Long Answer Type Questions
8.230 NCERT Highlights
8.231 Solutions
9.233-9.234 Fog - Carl Sandburg
9.233 Extract Based Questions
9.233 Short Answer Type Questions
9.233 Long Answer Type Questions
9.233 NCERT Highlights
9.234 Solutions
10.235-10.241 The Tale of Custard the Dragon - Ogden Nash
10.235 Extract Based Questions
10.238 Short Answer Type Questions
10.239 Long Answer Type Questions
10.239 NCERT Highlights
10.239 Solutions
11.242-11.244
11.242
11.243
11.243
11.243
11.243

For Anne Gregory - William Butler Yeats
Extract Based Questions
Short Answer Type Questions
Long Answer Type Questions
NCERT Highlights
Solutions

SUPPLEMENTARY READER

$1.247-1.254$	A Triumph of Surgery - James Herriot
1.247	Extract Based Questions
1.249	Short Answer Type Questions
1.250	Long Answer Type Questions
1.250	NCERT Highlights
1.250	Solutions
$2.255-2.259$	The Thief's Story - Ruskin Bond
2.255	Extract Based Questions
2.257	Short Answer Type Questions
2.257	Long Answer Type Questions
2.257	NCERT Highlights
2.258	Solutions
$3.260-3.264$	The Midnight Visitor - Robert Arthur
3.260	Extract Based Questions
3.262	Short Answer Type Questions
3.262	Long Answer Type Questions
3.262	NCERT Highlights
3.263	Solutions
$4.265-4.270$	A Question of Trust - Victor Canning
4.265	Extract Based Questions
4.267	Short Answer Type Questions
4.268	Long Answer Type Questions
4.268	NCERT Highlights
4.268	Solutions
$5.271-5.276$	Footprints Without Feet - H.G. Wells
5.271	Extract Based Questions
5.273	Short Answer Type Questions
5.274	Long Answer Type Questions
5.274	NCERT Highlights
5.275	Solutions
$6.277-6.281$	The Making of Scientist - Robert W. Peterson
6.277	Extract Based Questions
6.278	Short Answer Type Questions
6.279	Long Answer Type Questions
6.279	NCERT Highlights
6.279	Solutions

7.282-7.288	The Necklace - Guy De Maupassant
7.282	Extract Based Questions
7.284	Short Answer Type Questions
7.285	Long Answer Type Questions
7.285	NCERT Highlights
7.285	Solutions
$8.289-8.295$	The Hack Driver - Sinclair Lewis
8.289	Extract Based Questions
8.291	Short Answer Type Questions
8.292	Long Answer Type Questions
8.292	NCERT Highlights
8.292	Solutions
$9.296-9.302$	Bholi - K.A. Abbas
9.296	Extract Based Questions
9.298	Short Answer Type Questions
9.298	Long Answer Type Questions
9.299	NCERT Highlights
9.299	Solutions
$10.303-10.307$	The Book That Saved The Earth - Claire Boiko
10.303	Extract Based Questions
10.305	Short Answer Type Questions
10.305	Long Answer Type Questions
10.305	NCERT Highlights
10.305	Solutions
$1-18$	Solved Paper 2024 (Mathematics Basic)
$1-20$	Solved Paper 2024 (Mathematics Standard)
$1-15$	Solved Paper 2024 (Science)
$1-14$	Solved Paper 2024 (Social Science)
$1-17$	Solved Paper 2024 (English Language \& Literature)

Class X Board Exams are a race against time. You must know how to manage time efficiently if you want to ace your exams. At Career Launcher, we understand the struggle of attempting such a crucial examination for the first time and the pressure that comes along with it. Which is why, our Chapter and Topic-Wise Solved Papers for Mathematics, Science, Social Science and English have been designed to help you become acquainted with the exam pattern and hone your time management skills, both at the same time.
Exclusively designed for the students of CBSE Class X by highly experienced teachers, the book provides answers to all actual questions of Board Exams conducted from 2011 to 2024. The solutions have been prepared exactly in coherence with the latest marking pattern; after a careful evaluation of previous year trends of the questions asked in Class X Boards and actual solutions provided by CBSE.
The book follows a three-pronged approach to make your study more focused. The questions are arranged Chapter-wise so that you can begin your preparation with the areas that demand more attention. These are further segmented topic-wise and eventually the break-down is as per the marking scheme. This division will equip you with the ability to gauge which questions require more emphasis and answer accordingly. Apart from this, several value-based questions have also been included.
We hope the book provides the right exposure to Class X students so that you not only ace your Boards but mold a better future for yourself. And as always, Career Launcher's school team is behind you with its experienced gurus to help your career take wings.
Let's face the Boards with more confidence!
Wishing you all the best,
Team CL

Class $10^{\text {th }}$ Mathematics 2024-25 Analysis Unit Wise

Unit No.		Name	No. of Periods	Marks
I	Number Systems	15	6	
II	Algebra	45	20	
III	Coordinate Geometry	14	6	
IV	Geometry	31	15	
V	Trigonometry	33	12	
VI	Mensuration	24	10	
VII	Statistics \& Probability	28	11	
	Total		$\mathbf{8 0}$	
	Internal Assessment		$\mathbf{2 0}$	
Grand Total		190	100	

Class 10 ${ }^{\text {th }}$ Science 2024-25 Analysis Unit Wise

Units	Name of Units	No of Periods	Marks Distribution	
I	Chemical Substances-Nature and Behaviour	55	25	
II	World of Living	50	25	
III	Natural Phenomena	23	12	
N	Effects of Current	32	13	
V	Natural Resources	20	05	
	Total		$\mathbf{8 0}$	
	Internal assessment			$\mathbf{2 0}$
	Grand Total		100	

Class $10^{\text {th }}$ Social Science 2024-25 Analysis Unit Wise

Time: 3 Hrs.		Max. Marks: 80	
No.	Units	No. of Periods	Marks
I	History (India and the Contemporary World - II)	60	20
II	Geography (Contemporary India - II)	55	20
III	Political Science (Democratic Politics - II)	50	20
IV	Economics (Understanding Economic Development)	50	20
Total			
215	80		

Class 10 ${ }^{\text {th }}$ English Language and Literature 2024-25 Analysis Unit Wise

Sections	Name	Periods	Weightage
A	Reading Skills	40	20 Marks
B	Writing Skills with Grammar	40	20 Marks
C	Language through Literature	50	40 Marks
Total		130	80 Marks

Mathematics

UNIT I: NUMBER SYSTEMS

(15) PERIODS

1. REAL NUMBERS

Fundamental Theorem of Arithmetic - statements after reviewing work done earlier and after illustrating and motivating through examples, Proofs of irrationality of $\sqrt{2}, \sqrt{3}, \sqrt{5}$.

UNIT II: ALGEBRA

1. POLYNOMIALS
(8) PERIODS

Zeros of a polynomial. Relationship between zeros and coefficients of quadratic polynomials.

2. PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

(15) PERIODS

Pair of linear equations in two variables and graphical method of their solution, consistency/ inconsistency.
Algebraic conditions for number of solutions. Solution of a pair of linear equations in two variables algebraically - by substitution, by elimination. Simple situational problems.

3. QUADRATIC EQUATIONS

(15) PERIODS

Standard form of a quadratic equation $a x^{2}+b x+c=0,(a \neq 0)$. Solutions of quadratic equations (only real roots) by factorization, and by using quadratic formula. Relationship between discriminant and nature of roots.
Situational problems based on quadratic equations related to day to day activities to be incorporated.

4. ARITHMETIC PROGRESSIONS

(10) PERIODS

Motivation for studying Arithmetic Progression Derivation of the $n^{\text {th }}$ term and sum of the first n terms of A.P. and their application in solving daily life problems.

UNIT III: COORDINATE GEOMETRY

(15) PERIODS

REVIEW: Concepts of coordinate geometry, graphs of linear equations. Distance formula. Section formula (internal division). Area of a triangle.

UNIT IV: GEOMETRY

1. TRIANGLES

(15) PERIODS

Definitions, examples, counter examples of similar triangles.

1. (Prove) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.
2. (Motivate) If a line divides two sides of a triangle in the same ratio, the line is parallel to the third side.
3. (Motivate) If in two triangles, the corresponding angles are equal, their corresponding sides are proportional and the triangles are similar.
4. (Motivate) If the corresponding sides of two triangles are proportional, their corresponding angles are equal and the two triangles are similar.
5. (Motivate) If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are proportional, the two triangles are similar.
6. CIRCLES
(10) PERIODS

Tangent to a circle at, point of contact

1. (Prove) The tangent at any point of a circle is perpendicular to the radius through the point of contact.
2. (Prove) The lengths of tangents drawn from an external point to a circle are equal.

UNIT V: TRIGONOMETRY

1. INTRODUCTION TO TRIGONOMETRY
(10) PERIODS

Trigonometric ratios of an acute angle of a right-angled triangle. Proof of their existence (well defined); motivate the ratios whichever are defined at 0° and 90°. Values of the trigonometric ratios of $30^{\circ}, 45^{\circ}$ and 60°. Relationships between the ratios.

2. TRIGONOMETRIC IDENTITIES

(15) PERIODS

Proof and applications of the identity $\sin ^{2} A+\cos ^{2} A=1$. Only simple identities to be given.
3. HEIGHTS AND DISTANCES: Angle of elevation, Angle of Depression. (10) PERIODS Simple problems on heights and distances. Problems should not involve more than two right triangles. Angles of elevation / depression should be only $30^{\circ}, 45^{\circ}$, and 60°.

UNIT VI: MENSURATION

1. AREAS RELATED TO CIRCLES

(12) PERIODS

Area of sectors and segments of a circle. Problems based on areas and perimeter / circumference of the above said plane figures. (In calculating area of segment of a circle, problems should be restricted to central angle of $60^{\circ}, 90^{\circ}$ and 120° only.
2. SURFACE AREAS AND VOLUMES
(12) PERIODS

Surface areas and volumes of combinations of any two of the following: cubes, cuboids, spheres, hemispheres and right circular cylinders/cones.

UNIT VII: STATISTICS AND PROBABILITY

1. STATISTICS
(18) PERIODS

Mean, median and mode of grouped data (bimodal situation to be avoided).

2. PROBABILITY

(10) PERIODS

Classical definition of probability. Simple problems on finding the probability of an event.

MATHEMATICS-STANDARD QUESTION PAPER DESIGN CLASS - X (2024-25)

Time : 3 Hours
Max. Marks: 80

S. No.	Typology of Questions	Total Marks	\% Weightage (approx.)
1	Remembering: Exhibit memory of previously learned material by recalling facts, terms, basic concepts, and answers. Understanding: Demonstrate understanding of facts and ideas by organizing, comparing, translating, interpreting, giving descriptions, and stating main ideas	43	54
2	Applying: Solve problems to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	19	24
	Analysing: Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations	18	22
Evaluating: Present and defend opinions by making judgments about information, validity of ideas, or quality of work based on a set of criteria.	Creating: Compile information together in a different way by combining elements in a new pattern or proposing alternative solutions	80	100
	Total		

INTERNAL ASSESSMENT	20 MARKS
Pen Paper Test and Multiple Assessment (5+5)	10 Marks
Portfolio	05 Marks
Lab Practical (Lab activities to be done from the prescribed books)	05 Marks

MATHEMATICS-BASIC QUESTION PAPER DESIGN CLASS - X (2024-25)

Max. Marks: 80

S. No.	Typology of Questions	Total Marks	\% Weightage (approx.)
1	Remembering: Exhibit memory of previously learned material by recalling facts, terms, basic concepts, and answers. Understanding: Demonstrate understanding of facts and ideas by organizing, comparing, translating, interpreting, giving descriptions, and stating main ideas	60	75
2	Applying: Solve problems to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	12	15
	Analysing: Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations	8	10
3	Evaluating: Present and defend opinions by making judgments about information, validity of ideas, or quality of work based on a set of criteria. Creating: Compile information together in a different way by combining elements in a new pattern or proposing alternative solutions	80	100
	Total		

INTERNAL ASSESSMENT	20 MARKS
Pen Paper Test and Multiple Assessment (5+5)	10 Marks
Portfolio	05 Marks
Lab Practical (Lab activities to be done from the prescribed books)	05 Marks

Science

Course Structure

THEME: MATERIALS
(55 PERIODS)
Unit I: Chemical Substances - Nature and Behaviour
Chemical reactions: Chemical equation, Balanced chemical equation, Implications of a balanced chemical equation, Types of chemical reactions: Combination, Decomposition, Displacement, Double Displacement, Precipitation, Neutralization, Oxidation and Reduction.

Acids, Bases and Salts: Their definitions in terms of furnishing of $\mathrm{H}+$ and OH - ions, General properties, Examples and Uses, Concept of pH scale (Definition relating to logarithm not required), Importance of pH in everyday life; Preparation and uses of Sodium Hydroxide, Bleaching powder, Baking soda, Washing soda and Plaster of Paris.

Metals and Nonmetals: Properties of metals and non-metals; Reactivity series; Formation and properties of Ionic Compounds; Basic Metallurgical Processes; Corrosion and its prevention.

Carbon compounds: Covalent bonding in carbon compounds; Versatile nature of carbon; Homologous series; Nomenclature of carbon compounds containing functional groups (halogens, alcohol, ketones, aldehydes, alkanes and alkynes); difference between saturated hydrocarbons and unsaturated hydrocarbons; Chemical properties of carbon compounds (combustion, oxidation, addition and substitution reaction); Ethanol and Ethanoic acid (only properties and uses); Soaps and Detergents.
tHEME: THE WORLD OF THE LIVING
(50 PERIODS)

Unit II: World of Living

Life processes: 'Living Being'. Basic concept of nutrition, respiration, transport and excretion in plants and animals.

Control and co-ordination in animals and plants: Tropic movements in plants; Introduction of plant hormones; Control and co-ordination in animals: Nervous System; Voluntary, involuntary and reflex action; Chemical co-ordination: animal hormones.

Reproduction: Reproduction in animals and plants (asexual and sexual) reproductive health-need and methods of family planning. Safe sex vs HIV/AIDS. Child bearing and women's health.

Heredity and Evolution: Heredity; Mendel's contribution- Laws for inheritance of traits: Sex determination: brief introduction: (topics excluded - evolution; evolution and classification and evolution should not be equated with progress).

THEME: NATURAL PHENOMENA
(23 PERIODS)

Unit III: Natural Phenomena

Reflection of light by curved surfaces; Images formed by spherical mirrors, Centre of Curvature, Principal axis, Principal focus, Focal length, Mirror formula (Derivation not required), Magnification.

Refraction; Laws of Refraction, Refractive Index.
Refraction of light by Spherical Lens; Image formed by Spherical Lenses; Lens formula (Derivation not required); Magnification. Power of a lens.

Functioning of a lens in human eye, defects of vision and their corrections, applications of spherical mirrors and lenses.

Refraction of light through a prism, dispersion of light, scattering of light, applications in daily life. (excluding colour of the sun at sunrise and sunset).

THEME: HOW THINGS WORK

(32 PERIODS)

Unit IV: Effects of Current

Electric current, potential difference and electric current. Ohm's law; Resistance, Resistivity, Factors on which the resistance of a conductor depends. Series combination of resistors, parallel combination of resistors and its applications in daily life. Heating effect of electric current and its applications in daily life. Electric power, Interrelation between P, V, I and R.

Magnetic effects of current: Magnetic field, field lines, field due to a current carrying conductor, field due to current carrying coil or solenoid; Force on current carrying conductor, Fleming's Left Hand Rule, Electric Motor, Electromagnetic induction. Induced potential difference, Induced current. Fleming's Right Hand Rule, Electric Generator, Direct current. Alternating current : frequency of AC. Advantage of AC over DC. Domestic electric circuits.

THEME: NATURAL RESOURCES
(20 PERIODS)

Unit V: Natural Resources

Our environment: Eco-system, Environmental problems, Ozone depletion, Waste Production and their solutions. Biodegradable and Non-biodegradable substances.

Note for the Teachers:

1. The chapter Management of Natural Resources (NCERT Chapter 16) will not be assessed in the year-end examination. However, learners may be assigned to read this chapter and encouraged to prepare a brief write up to any concept of this chapter in their Portfolio. This may be for Internal Assessment and credit may be given Periodic Assessment/Portfolio).
2. The NCERT text books present information in boxes across the book. These help students to get conceptual clarity. However, the information in these boxes would not be assessed in the year-end examination.

PRACTICALS

Practical should be conducted alongside the concepts taught in theory classes

LIST OF EXPERIMENTS

1. A. Finding the pH of the following samples by using pH paper/universal indicator:

Unit-I
(i) Dilute Hydrochloric Acid
(ii) Dilute NaOH solution
(iii) Dilute Ethanoic Acid solution
(iv) Lemon juice
(v) Water
(vi) Dilute Hydrogen Carbonate solution
B. Studying the properties of acids and bases $(\mathrm{HCl} \& \mathrm{NaOH})$ on the basis of their reaction with:

Unit-I
a) Litmus solution (Blue/Red)
b) Zinc metal
c) Solid sodium carbonate
2. Performing and observing the following reactions and classifying them into:

Unit-I
A. Combination reaction
B. Decomposition reaction
C. Displacement reaction
D. Double displacement reaction
(i) Action of water on quicklime
(ii) Action of heat on ferrous sulphate crystals
(iii) Iron nails kept in copper sulphate solution
(iv) Reaction between sodium sulphate and barium chloride solutions
3. Observing the action of $\mathrm{Zn}, \mathrm{Fe}, \mathrm{Cu}$ and Al metals on the following salt solutions:

Unit-I
(i) $\mathrm{ZnSO}_{4}(\mathrm{aq})$
(ii) $\mathrm{FeSO}_{4}(\mathrm{aq})$
(iii) $\mathrm{CuSO}_{4}(\mathrm{aq})$
(iv) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(\mathrm{aq})$

Arranging $\mathrm{Zn}, \mathrm{Fe}, \mathrm{Cu}$ and Al (metals) in the decreasing order of reactivity based on the above result.
4. Studying the dependence of potential difference (V) across a resistor on the current (I) passing through it and determine its resistance. Also plotting a graph between V and I.
5. Determination of the equivalent resistance of two resistors when connected in series and parallel.
6. Preparing a temporary mount of a leaf peel to show stomata.
7. Experimentally show that carbon dioxide is given out during respiration.
8. Study of the following properties of acetic acid (ethanoic acid):
(i) Odour
(ii) solubility in water
(iii) effect on litmus
(iv) reaction with Sodium Hydrogen Carbonate
9. Study of the comparative cleaning capacity of a sample of soap in soft and hard water. Unit- I
10. Determination of the focal length of:
(i) Concave mirror
(ii) Convex lens
by obtaining the image of a distant object.
11. Tracing the path of a ray of light passing through a rectangular glass slab for different angles of incidence. Measure the angle of incidence, angle of refraction, angle of emergence and interpret the result.

Unit - III
12. Studying (a) binary fission in Amoeba, and (b) budding in yeast and Hydra with the help of prepared slides.
13. Tracing the path of the rays of light through a glass prism.
14. Identification of the different parts of an embryo of a dicot seed (Pea, gram or red kidney bean).

Social Science

COURSE STRUCTURE

History (India and the Contemporary World - II)			Suggestive no. of periods $=60$	20 inclusive of map pointing
Section	Chapter No.	Chapter name	No. of periods	Marks allocated
Events and processes	I	The Rise of Nationalism in Europe	17	$\begin{gathered} 18+2 \text { map } \\ \text { pointing * } \end{gathered}$
	II	Nationalism In India	17	
Livelihoods, Economies and Societies	III	The Making of a Global World (To be evaluated in the Board Examination Subtopics: 1 to 1.3 Pre Modern World to Conquest, Disease and Trade)	6	
		Interdisciplinary project as part of multiple assessments (Internally assessed for 5 marks Sub topics 2 to 4.4 The nineteenth century (1815-1914) to end of Bretton Woods \& the beginning of "Globalisation."	4	
	IV	The Age of Industrialization (To be assessed as part of Periodic Assessments only)	6	
III Everyday Life, Culture and Politics	V	Print Culture and the Modern World	10	* Marks as mentioned above

CLASS X
LIST OF MAP ITEMS

Subject	Name of the Chapter	List of areas to be pointed on the Map
History	Nationalism in India	I. Congress sessions: - 1920 Calcutta - 1920 Nagpur. - 1927 Madras session, II. 3 Satyagraha movements: - Kheda - Champaran. - Ahmedabad mill workers III. Jallianwala Bagh IV. Dandi March
Geography	Resources and Development	Identify: Major Soil Types
	Water Resources	Locating and Labelling: - Salal - Bhakra Nangal - Tehri - Rana Pratap Sagar - Sardar Sarovar - Hirakud - Nagarjuna Sagar - Tungabhadra
	Agriculture	Identify: - Major areas of Rice and Wheat

		- Largest/ Major producer states of Sugarcane, Tea, Coffee, Rubber, Cotton and Jute
	Minerals and Energy Resources	Identify: a. Iron Ore mines - Mayurbhanj - Durg - Bailadila - Bellary - Kudremukh b. Coal Mines - Raniganj - Bokaro - Talcher - Neyveli c. Oil Fields - Digboi - Naharkatia - Mumbai High - Bassien - Kalol - Ankaleshwar Locate \& label: Power Plants a. Thermal - Namrup - Singrauli - Ramagundam

		b. Nuclear - Narora - Kakrapara - Tarapur - Kalpakkam
	Manufacturing Industries	I. Manufacturing Industries (Locating and Labelling only) - Cotton Textile Industries: a. Mumbai b. Indore c. Surat d. Kanpur e. Coimbatore - Iron and Steel Plants: a. Durgapur b. Bokaro c. Jamshedpur d. Bhilai e. Vijayanagar f. Salem - Software Technology Parks: a. Noida b. Gandhinagar c. Mumbai d. Pune e. Hyderabad, f. Bengaluru g. Chennai. h. Thiruvananthapuram
	Lifelines of National Economy	Locating and Labelling: a. Major sea ports - Kandla - Mumbai - Marmagao - New Mangalore - Kochi - Tuticorin - Chennai - Vishakhapatnam - Paradip - Haldia b. International Airports: - Amritsar (Raja Sansi - Sri Guru Ram Dass jee) - Delhi (Indira Gandhi) - Mumbai (Chhatrapati Shivaji) - Chennai (Meenam Bakkam) - Kolkata (Netaji Subhash Chandra Bose) - Hyderabad (Rajiv Gandhi)

Note: Items of Locating and Labelling may also be given for Identification.

CLASS X
 QUESTION PAPER DESIGN

Subject Wise Weightage

Subject	Syllabus	Marks (80)	Percentage
History	- The Rise of Nationalism in Europe. - Nationalism in India: - The Making of a Global World Sub topics1 to 1.3 - Print Culture and the Modern World - Map pointing	18+2	25\%
Political Science	- Power - sharing - Federalism - Gender, Religion and Caste - Political Parties - Outcomes of Democracy	20	25\%
Geography	- Resources and Development - Forest and Wildlife Resources - Water Resources - Agriculture - Mineral\& Energy resources - Manufacturing industries. - Lifelines of National Economy (map pointing) - Map pointing	17+3	25\%
Economics	- Development - Sectors of the Indian Economy - Money and Credit - Globalization and The Indian Economy Sub topics: - What is Globalization? - Factors that have enabled Globalisation	20	25\%

Weightage to Type of Questions

Type of Questions	Marks (80)	Percentage
1 Mark MCQs (20x1) (Inclusive Of Assertion, Reason, Differentiation \&Stem)	20	25%
2 Marks Narrative Questions (4x2) (Knowledge,Understanding,Application,Analysis,Evaluation ,Synthesis \& Create)	8	10%
3 Marks Narrative Questions (5x3) (Knowledge,Understanding,Application,Analysis,Eva luation,Synthesis \& Create)	15	18.75%
4 MARKS Case Study Questions (3x4) (Knowledge,Understanding,Application,Analysis,Evaluatio n,Synthesis \& Create)	12	15%
5 Mark Narrative Questions (4x5) (Knowledge,Understanding,Application,Analysis,Evaluatio n,Synthesis \& Create)	20	25%
Map Pointing	5	6.25%

Weightage to Competency Levels

Sr. No.	Competencies	Marks (80)	Percentage
$\mathbf{1}$	Remembering and Understanding: Exhibiting memory of previously learned material by recalling facts, terms, basic concepts, and answers; Demonstrating understanding of facts and ideas by organizing, translating, interpreting, giving descriptions and stating main ideas.	24	30%
$\mathbf{2}$	Applying: Solving problems to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	11	13.25%
$\mathbf{3}$	Formulating, Analysing, Evaluating and Creating: Examining and breaking information into parts by identifying motives or causes; Making inferences and finding evidence to support generalizations; Presenting and defending opinions by making judgments about information, validity of ideas, or quality of work based on a set of criteria; Compiling information together in a different way by combining elements in a new pattern or proposing alternative solutions.	40	50%
$\mathbf{4}$	Map Skill	5	6.25%

CLASS X

GUIDELINES FOR INTERNAL ASSESSIMENT: 20 MARKS

Type of Assessment	Description	Marks Allocated
Periodic Assessment	Pen Paper Test.	5
Multiple Assessment	Quiz, debate, role play, viva, group discussion, visual expression, interactive bulletin boards, gallery walks, exit cards, concept maps, peer assessment, Self- assessment etc. through Inter disciplinary project	5
Subject Enrichment Activity	Project Work on Consumer Rights OR Social Issues OR Sustainable Development	5
Portfolio	Classwork, Work done (activities/ assignments) reflection, narrations, journals, etc. Achievements of the student in the subject throughout the year Participation of the student in different activities like heritage India quiz	$\mathbf{5}$

English

SECTION A

Reading Comprehension through Unseen Passage

1. Discursive passage of $400-450$ words.
$(10 \times 1=10)$
2. Case-based passage (with visual input- statistical data, chart etc.) of $200-250$ words.
(Total length of two passages to be 600-700 words)
Multiple Choice Questions / Objective Type Questions will be asked to assess inference, analysis, interpretation, evaluation and vocabulary.

SECTION B

III Grammar

10 Marks

- Tenses
- Modals
- Subject - verb concord
- Reported speech
- Commands and requests
- Statements
- Questions
- Determiner

The courses at the secondary level seek to cement high professional grasp of grammatical items and levels of accuracy. Accurate use of spelling, punctuation and grammar in context will be assessed through Gap Filling/ Editing/Transformation exercises. Ten out of 12 questions will have to be attempted.

IV CREATIVE WRITING SKILLS

10 marks
This section will have short as well as long writing tasks including compositions.

1. Formal Letter based on a given situation in 100-120 words. One out of two questions is to be answered.
(5 marks)
2. Writing an Analytical Paragraph (100-120 words) on a given Map / Chart / Graph / Cue/s. One out of two questions is to be answered.
(5 marks)

V. Reference to the Context

(5 + $5=10$ Marks)
I. One extract out of two from Drama / Prose.
II. One extract out of two from poetry.

Multiple Choice Questions / Objective Type Questions will be asked to assess inference, analysis, interpretation, evaluation and vocabulary.
VI. Short \& Very Long Answer Questions
I. Four out of Five Short Answer Type Questions to be answered in 40-50 words from the book FIRST FLIGHT
($4 \times 3=12$ Marks)
II. Two out of Three Short Answer Type Questions to be answered in 40-50 words each from FOOTPRINTS WITHOUT FEET to assess interpretation, analysis, inference and evaluation.
($2 \times 3=6$ Marks)
III. One out of two Long Answer Type Questions from FIRST FLIGHT to be answered in about 100-120 words each to assess creativity, imagination and extrapolation beyond the text and across the texts. This can be a passage-based question taken from a situation/plot from the texts.

6 Marks
IV. One out of two Long Answer Type Questions from FOOTPRINTS WITHOUT FEET on theme or plot involving interpretation, extrapolation beyond the text and inference or character sketch to be answered in about 100-120 words.

6 Marks

Prescribed Books: Published by NCERT, New Delhi

First Flight

Prose

1. A letter to God
2. Nelson Mandela - Long Walk to Freedom
3. Two Stories About Flying
4. From the Diary of Anne Frank
5. Glimpses of India
6. Mijbil the Otter
7. Madam Rides the Bus
8. The Sermon at Benares
9. The Proposal (Play)

Poems

1. Dust of Snow
2. Fire and Ice
3. A tiger in the Zoo
4. How to Tell Wild Animals
5. The Ball Poem
6. Amanda!
7. The Trees
8. Fog
9. The Tale of Custard the Dragon
10. For Anne Gregory

FOOTPRINTS WITHOUT FEET

1. A triumph of Surgery
2. The Thief's Story
3. The Midnight Visitor
4. A Question of Trust
5. Footprints Without Feet
6. The making of a Scientist
7. The necklace
8. Bholi
9. The Book That Saved the Earth
10. WORDS AND EXPRESSIONS - II (WORKBOOK FOR CLASS X) - Units 1 to 4 and Units 7 to 11
Note: Teachers are advised to:
(i) encourage interaction among peers, students and teachers through activities such as role play, discussions, group work etc.
(ii) reduce teacher-talking time and keep it to the minimum,
(iii) take up questions for discussion to encourage pupils to participate and to marshal their ideas and express and defend their views, and
(iv) follow the Speaking and Listening activities given in the NCERT books.

Besides measuring learning outcome, texts serve the dual purpose of diagnosing mistakes and areas of non-learning. To make evaluation a true index of learners' knowledge, each language skill is to be assessed through a judicious mixture of different types of questions.

INTERNAL ASSESSMENT
Listening and Speaking Competencies
Assessment of Listening and Speaking Skills will be for 05 marks.
It is recommended that listening and speaking skills should be regularly practiced .
Art-integrated projects based on activities like Role Play, Skit, Dramatization etc. must be used.

ENGLISH LANGUAGE AND LITERATURE CLASS - X

(2024-25)(Code no.184)
Marks 80

Sections	Competencies	Total Marks
Reading Comprehension	Conceptual understanding, decoding, analyzing, inferring, interpreting and vocabulary	20
Writing Skill and Grammar	Creative expression of an opinion, reasoning, justifying, illustrating, appropriacy of style and tone, using appropriate format and fluency. Applying conventions, using integrated structures with accuracy and fluency	20
Language through Literature	Recalling, reasoning, appreciating, applying literary conventions illustrating and justifying etc. Extract relevant information, identifying the central theme and sub-theme, understanding the writers' message and writing fluently.	40
Total	$\mathbf{8 0}$	

Internal Assessment
20 marks

Mathematics
 (Standard \& Basic)

Real Numbers

[TOPIC 1] Euclid's Division Lemma and Fundamental Theorem of Arithmetic

Summary

Euclid's Division Lemma

Dividend $=$ divisor \times quotient + remainder .
Given two positive integers a and b. There exist unique integers q and r satisfying

$$
a=b q+r \text { where } 0 \leq r<b
$$

where a is dividend, b is divisor, q is quotient and r is remainder.

- If $a=b q+r$, then every common divisor of a and b is a common divisor of b and r also.

Euclid's Division Algorithm

To obtain the HCF of two positive integers, say c and d, with $c>d$, follow the steps below:
Step 1: Apply Euclid's division lemma, to c and d. So, we find whole numbers, q and r such that $c=d q+r$, $0 \leq r<d$.
Step 2: If $r=0, d$ is the HCF of c and d. If $r \neq 0$, apply the division lemma to d and r.

Step 3: Write $d=e r+r_{1}$ where $0<r_{1}<r$
Step 4: Continue the process till the remainder is zero. The divisor at this stage will be the required HCF.

- Odd integers of the form $6 q+1,6 q+3$ or $6 q+5$ shows that 6 is the divisor of given integer
- Any positive integer can be of the form $3 m, 3 m+1$, $3 m+2$. Such that its cube would be of the form $9 q+r$.

Fundamental Theorem of Arithmetic

Every composite number can be expressed as a product of primes and this expression is unique, except from the order in which the prime factors occur.

- HCF is the lowest power of common prime and LCM is the highest power of primes.
- $\operatorname{HCF}(a, b) \times L C M(a, b)=a \times b$.
- Any number ending with zero must have a factor of 2 and 5.

PREVIOUS YEARS'

examination questions

TOPIC 1

ロ1 Mark Questions

1. L.C.M. of $2^{3} \times 3^{2}$ and $2^{3} \times 3^{3}$ is:
(a) 2^{3}
(b) 3^{3}
(c) $2^{3} \times 3^{3}$
(d) $2^{2} \times 3^{2}$
[TERM 1, 2012]
2. If p and q are two co-prime numbers, then HCF (p, q) is:
(a) p
(b) q
(c) $p q$
(d) 1
[TERM 1, 2013]
3. If $a=\left(2^{2} \times 3^{3} \times 5^{4}\right)$ and $b=\left(2^{3} \times 3^{2} \times 5\right)$, then HCF (a, b) is equal to:
(a) 900
(b) 180
(c) 360
(d) 540 [TERMM 1, 2013]
4. The HCF of two numbers is 27 and their LCM is 162 , if one of the number is 54 , find the other number.
[TERM 1, 2017]
5. What is the HCF of the smallest prime number and the smallest composite number?
[TERM 1, 2017]
6. Write the number of zeroes in the end of a number whose prime factorization is $2^{2} \times 5^{3} \times 3^{2} \times 17$. [2019]
7. The sum of exponents of prime factors in the prime-factorisation of 196 is
(a) 3
(b) 4
(c) 5
(d) 2 [Standard, 2020]
8. Euclid's division Lemma states that for two positive integers a and b, there exists unique integer q and r satisfying $a=b q+r$, and
(a) $0<r<b$
(b) $0<r \leq b$
(c) $0 \leq \mathrm{r}<\mathrm{b}$
(d) $0 \leq r \leq b$
[Standard, 2020]
9. 120 can be expressed as a product of its prime factors as
(a) $5 \times 8 \times 3$
(b) 15×2^{3}
(c) $10 \times 2^{2} \times 3$
(d) $5 \times 2^{3} \times 3$
[Basic, 2020]
10. The exponent of 5 in the prime factorisation of 3750 is
(a) 3
(b) 4
(c) 5
(d) 6
[Standard Term 1, 2022]
11. The greatest number which when divides 1251 , 9377 and 15628 leaves remainder 1, 2 and 3 respectively is
(a) 575
(b) 450
(c) 750
(d) 625
[Standard Term 1, 2022]
12. If a and b are two coprime numbers, then a^{3} and b^{3} are
(a) Coprime
(b) Not coprime
(c) Even
(d) Odd
[Standard Term 1, 2022]
13. If n is a natural number, then $2\left(5^{\mathrm{n}}+6^{\mathrm{n}}\right)$ always ends with
(a) 1
(b) 4
(c) 3
(d) 2
[Standard Term 1, 2022]
14. The LCM of two numbers is 2400 . Which of the following can not be their HCF?
(a) 300
(b) 400
(c) 500
(d) 600
[Standard Term 1, 2022]
15. HCF of 92 and 152 is
(a) 4
(b) 19
(c) 23
(d) 57
[Basic Term 1, 2022]
16. HCF of two consecutive even numbers is
(a) 0
(b) 1
(c) 2
(d) 4
[Basic Term 1, 2022]
17. The $(\mathrm{HCF} \times \mathrm{LCM})$ for the numbers 50 and 20 is
(a) 1000
(b) 50
(c) 100
(d) 500
[Basic Term 1, 2022]
18. For which natural number $n, 6^{n}$ ends with digit zero?
(a) 6
(b) 5
(c) 0
(d) None
[Basic Term 1, 2022]
19. If $\mathrm{p}^{2}=\frac{32}{50}$, then p is a / an
(a) whole number
(b) integer
(c) rational number
(d) irrational number
[Standard, 2023]
20. $(\mathrm{HCF} \times \mathrm{LCM})$ for the number 30 and 70 is :
(a) 2100
(b) 21
(c) 210
(d) 70
[Basic, 2023]

■ 2 Marks Questions

21. Show that 8^{n} cannot end with the digit zero for any natural number n.
[TERM 1, 2011]
22. Euclid's algorithm, find the HCF of 240 and 228.
[TERM 1, 2012]
23. Explain why $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7+5$ is a composite number?
[TERM 1, 2014]
24. Find the least positive integer which on diminishing by 5 is exactly divisible by 36 and 54.
[TERM 1, 2015]
25. Express 5050 as product of its prime factors. Is it unique?
[TERM 1, 2016]
26. Use Euclid's division algorithm to find the HCF of 255 and 867.
[2019]
27. Check whether 6^{n} can end with the digit ' 0 '(zero) for any natural number n.

OR
Find the LCM of 150 and 200
[Basic, 2020]
28. Show that 6^{n} can not end with digit 0 for any natural number ' n '.

OR

Find the HCF and LCM of 72 and 120.
[Standard, 2023]

D 3 Marks Questions

29. Show that square of any positive integer is either of the form $3 m$ or $(3 m+1)$ for some integer m.
[TERM 1, 2011]
30. Find the LCM and HCF of 336 and 54 and verify that $\mathrm{LCM} \times \mathrm{HCF}=$ Product of the two numbers.
[TERM 1, 2012]
31. Using Euclid's division algorithm, find whether the pair of numbers 847, 2160 are co-primes or not.
[TERM 1, 2012]
32. Find HCF and LCM of 180, 252 and 324.
[TERM 1, 2013]
33. Pens are sold in pack of 8 and notepads are sold in pack of 12 . Find the least number of pack of each type that one should buy so that there are equal number of pens and notepads.
[TERM 1, 2014]
34. Explain whether the number $3 \times 5 \times 13 \times 46+23$ is a prime number or a composite number.
[TERM 1, 2015]
35. Find the greatest number of six digit number exactly divisible by 18,24 and 36 .
[TERM 1, 2016]
36. Using division algorithm find quotient and remainder dividing $x^{3}+13 x^{2}+x-2$ by $2 x+1$
[TERM 1, 2016]
37. Find HCF and LCM of 404 and 96 and verify that $\mathrm{HCF} \times \mathrm{LCM}=$ Product of the two given numbers.
[TERM 1, 2017]
38. Find the HCF and LCM of 26, 65 and 117, using prime factorisation.
[Standard, 2023]

■ 4 Marks Question

39. Use Euclid's Division Lemma to show that the square of any positive integer is either of the form $3 m$ or $3 m+1$ for some integer m.
[TERM 1, 2012]

Solutions

1. Given, $2^{3} \times 3^{2}$ and $2^{2} \times 3^{3}$

We know, LCM is the product of terms containing highest powers of

$$
\begin{equation*}
(2,3) \Rightarrow 2^{3} \times 3^{3} \tag{1}
\end{equation*}
$$

Hence, the correct option is (c).
2. LCM of the given number $=p q$
$\mathrm{HCF}=\frac{\text { product of numbers }}{\text { LCM of numbers }}=\frac{p \times q}{p q}=1$
Two integers are co prime when they have no common factor other than 1.
Therefore the H.C.F is 1.
Hence the correct option is (d).
3. The HCF of a and $b=\left(2^{2} \times 3^{2} \times 5\right)$
$=(4 \times 9 \times 5)=(36 \times 5)$
$=(180)$
[1]
4. $\operatorname{HCF}(54, b)=27$ and $\operatorname{LCM}(54, b)=162$

According to the formula,
$\operatorname{LCM}(a, b) \times \operatorname{HCF}(a, b)=a \times b$
$\Rightarrow 27 \times 162=54 \times b$
$\Rightarrow b=\frac{27 \times 162}{54}$
$\Rightarrow b=\frac{162}{2}$
$\Rightarrow b=81$
So, the other number is 81 .
5. The smallest prime number is 2 .

And the smallest composite number is 4 .
Factors of $2=1 \times 2$
$4=1 \times 2 \times 2$.
So the HCF of the smallest prime number and the smallest composite number is 2 .
[1/2]
6. $\Rightarrow 2^{2} \times 5^{3} \times 3^{2} \times 17$

$$
\begin{align*}
& =2 \times 2 \times 5 \times 5 \times 5 \times 3 \times 3 \times 17 \tag{1/2}\\
& =10 \times 10 \times 15 \times 51=76500
\end{align*}
$$

Hence, the number of zeroes in the end $=2[1 / 2]$
7. (b) $7 \mid 196$
$\begin{array}{ll}7 & 28\end{array}$
$2 \quad 4$
$2 \left\lvert\, \begin{aligned} & 2 \\ & 1\end{aligned}\right.$
$\Rightarrow 196=7^{2} \times 2^{2}$
Sum of exponents $=2+2=4$
8. (c) $0 \leq r<b$
9. (d

5	120	$120=2^{3} \times 5 \times 3$
3	24	
2	8	
2	4	
2	2	
	1	

Ans. (d) $5 \times 2^{3} \times 3$
10. (a) According to the prime factorisation, 3750 can be written as
$3750=5 \times 5 \times 5 \times 5 \times 3 \times 2=5^{4} \times 3^{1} \times 2^{1}$
It is clear from above, that exponent of 5 in the prime factorisation of 3750 is 4.
[1]
11. (d) First subtract the remainders from their respective number,
$1251-1=1250$
$9377-2=9375$
$15628-3=15625$

According to the prime factorisation,
$1250=2 \times 5 \times 5 \times 5 \times 5$
$9375=3 \times 5 \times 5 \times 5 \times 5 \times 5$
$15625=5 \times 5 \times 5 \times 5 \times 5 \times 5$
$\operatorname{HCF}(1250,9375,15625)$

$$
\begin{align*}
& =5 \times 5 \times 5 \times 5 \\
& =625 \tag{1}
\end{align*}
$$

12. (a) As a and b are co-prime then a^{3} and b^{3} are also co-prime.
We can understand above situation with the help of an example.
Let $a=3$ and $b=4$
$a^{3}=3^{3}=27$ and $b^{3}=4^{3}=64$
Clearly, $\operatorname{HCF}(a, b)=\operatorname{HCF}(3,4)=1$
Then, $\operatorname{HCF}\left(a^{3}, b^{3}\right)=\operatorname{HCF}(27,64)=1$
13. (d) Let us take an example of different powers of 5.

As, $5^{1}=5 ; 5^{2}=25 ; 5^{3}=125 ; 5^{4}=625$
It is clear from above example that 5^{n} will always end with 5.
Similarly, 6^{n} will always end with 6 .
So, $5^{n}+6^{n}$ will always end with 6 .
Also, $2\left(5^{n}+6^{n}\right)$ always ends with $2 \times 11=22$
i.e., it will always end with 2.
14. (c) According to the property, HCF of two numbers is also a factor of LCM of same two numbers.
Out of all the options, only (c) 500 is not a factor of 2400 .
Therefore, 500 cannot be the HCF.
15. (a) Prime factorisation of $92=2 \times 2 \times 23$

Prime factorisation of $152=2 \times 2 \times 2 \times 19$
To find HCF, we multiply all the prime factors common to both number:
Therefore, $\mathrm{HCF}=2 \times 2=4$
16. (c) Let the two consecutive even numbers be $2 n$ and ($2 \mathrm{n}+2$).
Prime factorisation of $2 n=2 \times n$
Prime factorisation of $(2 n+2)=2 \times(n+1)$
To find HCF, we multiply all the prime factors common to both numbers
Therefore, $\mathrm{HCL}=2$
17. (a) We know that HCF $\times \mathrm{LCM}=$ Product of two numbers
$\Rightarrow \mathrm{HCF} \times \mathrm{LCM}=20 \times 50$
$\therefore \mathrm{HCF} \times \mathrm{LCM}=1000$
18. (d) Since 6^{n} is expressed as $(2 \times 3)^{\mathrm{n}}$, it can never end with digit 0 as it does not have 5 in its prime factorisation.
19. (c)

$$
\begin{aligned}
\mathrm{p}^{2} & =\frac{32}{50} \\
\mathrm{p}^{2} & =\frac{16}{25} \\
\mathrm{p} & =\frac{4}{5}
\end{aligned}
$$

Here, rational number is a number in the form of $\frac{p}{q}$ where p and q are integ ers having no common q factor other than 1 and q doesn't equals to 0 .
20. (a) LCM of 30 and 70 is 210 and HCF of 30 and 70 is 10 .
Hence, $(\mathrm{HCF} \times \mathrm{LCM})$ of 30 and $70=2100$
21. The prime factorization should have 2 and 5 as a common factor for a number to end with the digit zero.
[1]
$8^{n}=(2 \times 2 \times 2)^{n}$ does not have 5 in its prime factorization.
Hence, 8^{n} cannot end with the digit zero for any natural number n.
22. We know, by Euclid's Division Lemma,

$$
a=b q+r, 0 \leq r<b
$$

Applying Euclid's Lemma,
Step 1 : Since $240>228$, we apply the division lemma to 240 and 228 , to get $240=228 \times 1+12$

Step 2 : Since the remainder $12 \neq 0$, we apply the division lemma to 228 and 12 , to get $228=12 \times 19+0$
The remainder has now become zero.
Since the divisor at this stage is 12 , the HCF is 12.
23. We can write $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7+5$ as
$\Rightarrow 5(1 \times 2 \times 3 \times 4 \times 6 \times 7+1)$
$\Rightarrow 5(1 \times 2 \times 3 \times 4 \times 6 \times 7+1)=5 \times 1009$
Hence we can say that the given number has at least one factor other than 1 and number itself.
$\Rightarrow(5,1009,1,5045)$
Therefore $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7+5$ is a composite number.
24. Finding the LCM of 36 and 54,

$$
36=2 \times 2 \times 3 \times 3
$$

$$
\begin{equation*}
54=2 \times 3 \times 3 \times 3 \tag{1}
\end{equation*}
$$

LCM $=2 \times 2 \times 3 \times 3 \times 3=108$
Now it is given that the number is diminished by 5 .
This means the least positive will be:
$5+(\mathrm{LCM}$ of 36 and 54$)$
$=5+108$
$=113$
Hence, 113 is the least positive integer which on diminishing by 5 is exactly divisible by 36 and 54 .
25. 5050 can be factored as,
$5050=2 \times 5 \times 5 \times 101$
We can write it as $2 \times 5^{2} \times 101$
Here all the factors are prime numbers and can be expressed as product of its prime numbers.
So, Yes it is unique.
[2]
26. By using Euclid's division leema

$$
\mathrm{a}=\mathrm{bq}+\mathrm{r}
$$

where, $\mathrm{a}>\mathrm{b}$
So, $\mathrm{a}=867$ and $\mathrm{b}=255$
$867=255 \times 3+102$
here, $\mathrm{r} \neq 0$, Hence, $\mathrm{a}=255$ and $\mathrm{b}=102$
Now, $255=102 \times 2+51$
Here, $\mathrm{r} \neq 0$, Hence, $\mathrm{a}=102$ and $\mathrm{b}=51$
$102=51 \times 2+0$
Here, $r=0$
So, HCF of $(867,251)=51$
27. 6^{n}
$\Rightarrow(2 \times 3)^{n}$
It can be observed that 5 is not in the prime factorisation of 6 . Hence for any value of $n, 6^{n}$ will not be divisible by 5 .
$\therefore 6^{\mathrm{n}}$ cannot end with 0 for any natural no. n.

OR
$\operatorname{LCM}(150,200)$

5	150
5	30
3	6
2	2
	1

5	200
5	40
2	8
2	4
2	2
	1

[1]

$$
\begin{align*}
150 & =2^{1} \times 3^{1} \times 5^{2} \\
200 & =2^{3} \times 5^{2} \\
\operatorname{LCM}(150,200) & =2^{3} \times 3^{1} \times 5^{2} \\
& =8 \times 3 \times 25=600 \tag{1}
\end{align*}
$$

28. If any digit has the last digit 10 that means it is divisible by 10 .
The factor of $10=2 \times 5$,
So value of 6^{n} should be divisible by 2 and 5 .
Both 6^{n} is divisible by 2 but not divisible by 5 .
So, it can not end with 0 .
OR
The prime factorisation of 72 and 120, respectively, is given by:

$$
\begin{aligned}
& 72=2 \times 2 \times 2 \times 3 \times 3=2^{3} \times 3^{2} \\
& 120=2 \times 2 \times 2 \times 3 \times 5=2^{3} \times 3^{1} \times 5^{1}
\end{aligned}
$$

$\operatorname{LCM}(72,120)=360$
The common prime factors of 72 and 120 are 2, 2, 2 and 3.
Hence, the HCF of 72 and 120

$$
=2 \times 2 \times 2 \times 3=24 .
$$

$$
\operatorname{HCF}(72,120)=24
$$

29. Let c be any positive number and $d=3$

Then $c=3 q+r$ for $q \geq 0$
Also, $r=0,1,2$ as $0 \leq r \leq 3$
Thus, $c=3 q$ or $c=3 q+1$ or $c=3 q+2$
$\Rightarrow c^{2}=(3 q)^{2}$ or $(3 q+1)^{2}$ or $(3 q+2)^{2}$
$\Rightarrow c^{2}=3 \times\left(3 q^{2}\right)$ or $9 q^{2}+6 q+1$ or $9 q^{2}+12 q+4$
$\Rightarrow c^{2}=3 \times\left(3 q^{2}\right)$ or $3\left(3 q^{2}+2 q\right)+1$ or $3\left(3 q^{2}+4 q+1\right)+1$
$\Rightarrow c^{2}=3 m_{1}$ or $3 m_{2}+1$ or $3 m_{3}+1$ where
$m_{1}=3 q^{2}, m_{2}=3 q^{2}+2 q$ and $m_{3}=3 q^{2}+4 q+1$
Hence, square of any positive integer is either of $3 m$ or $(3 m+1)$ for some integer m.
30. Find the factors of 336 and 54 .
$336=2 \times 2 \times 2 \times 2 \times 3 \times 7$
$54=2 \times 3 \times 3 \times 3$
HCF of 336 and $54=2 \times 3=6$
LCM of
336 and $54=2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7=3024$
Product of two numbers $=336 \times 54=18144$
Hence verified.
31. $a=2160, b=847$

By Euclid's lemma, given positive integers a and b , there exist unique integers q and r satisfying $a=b q+r, 0 \leq r<b$.

As $2160>847$, we apply the division lemma to 2160 and 847 , to get $2160=847 \times 2+466$

Since the remainder $466 \neq 0$, we apply the division lemma to 847 and 466, and continue the same process till we get remainder 0 .
$847=466 \times 1+381$
$466=381 \times 1+85$
$381=85 \times 4+41$
$85=41 \times 2+3$
$41=3 \times 13+2$
$3=2 \times 1+1$
$2=1 \times 1+1$
$1=1+0$
As 1 is the HCF of 847 and 2160. 847 and 2160 are the co-primes.
32. Consider 252 and 324. Let, $a=324$ and $b=252$ by Euclid's division lemma-

$$
\begin{align*}
& a=b q+r, 0<\text { or }=r<b \\
& 324=252 \times 1+72 \\
& 252=72 \times 3+36 \\
& 72=36 \times 2+0 \tag{1}
\end{align*}
$$

Therefore, $\operatorname{HCF}(252,324)=36$
Now consider 36 and 180, here $a=180$ and $b=36$. By Euclid's division
$a=b q+r, 0<o r=r<b$
$180=36 \times 5+0$
Therefore, $\operatorname{HCF}(180,36)=36$
33. Pens are sold in pack of 8 and notepads are sold in pack of 12 ,
LCM of 8 and 12 is:
$8=2^{3}$ and $12=2^{2} \times 3$
$\mathrm{LCM}=2^{3} \times 3=8 \times 3=24$
Least number of pack of pen $=\frac{24}{8}=3$
Least number of pack of notepads $=\frac{24}{12}=2$
Hence, 3 packs of pen and 2 packs of notepads one should buy to get 24 pens and notepads. [1]
34. $3 \times 5 \times 13 \times 46+23$

It can be re-written as:

$$
\begin{align*}
3 \times 5 \times 13 \times 2 \times 23+23 & =23(3 \times 5 \times 13 \times 2+1) \\
& =23 \times 391=8993 \tag{1}
\end{align*}
$$

Here 8993 is written as the product of two different numbers 23×391.
It means it has 23 and 391 as its factors other than 1 and 8993.
Hence, it is a composite number.
35. Greatest number of 6 digits is 999999

The numbers given are 18, 24 and 36.
Here LCM of 18, 24, 36.
$18=2 \times 3 \times 3=2 \times 3^{2}$
$36=2 \times 2 \times 3 \times 3=2^{2} \times 3^{2}$
$24=2 \times 2 \times 2 \times 3=2^{3} \times 3$
Now,
The LCM of 18,24 and $36=2^{3} \times 3^{2}=72$
Now dividing 999999 by 72
$\frac{999999}{72}=13888$ with remainder 63
And,
$999999-63=999936$
Thus 999936 is the greatest number 6 -digit number divisible by18, 24 and 36.
36. $x^{3}+13 x^{2}+x-2$ can be divided by $2 x+1$ as

$$
\begin{array}{r}
\frac{1}{2} x^{2}+\frac{25}{4} x-\frac{21}{8} \\
\frac{-\quad-}{x^{3}+\frac{1}{2} x^{2}} \\
\frac{-25}{x^{3}+13 x^{2}+x-2} x^{2}+x-2 \\
\frac{25}{2} x^{2}+\frac{25}{4} x \\
-\frac{21}{4} x-2 \\
-\frac{21}{4} x-\frac{21}{8} \\
+\quad+
\end{array}
$$

Here quotient is $\frac{1}{2} x^{2}+\frac{25}{4} x-\frac{21}{8}$ and remainder is $\frac{5}{8}$.
37. The prime factors of:

$$
\begin{align*}
& 96=2 \times 2 \times 2 \times 2 \times 2 \times 3 \\
& 404=2 \times 2 \times 101 \tag{1}
\end{align*}
$$

Therefore the HCF = Product of smallest power of each common prime factor $=2 \times 2=4$
And LCM $=$ Product of greatest power of each
prime factor $=2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 101$

$$
=9696
$$

To prove:
$\mathrm{HCF} \times \mathrm{LCM}=101 \times 96$
Here, $\mathrm{HCF} \times \mathrm{LCM}=4 \times 9696$

$$
=38784
$$

$101 \times 96=38784$
Hence proved, $\mathrm{HCF} \times \mathrm{LCM}=$ Product of the two given numbers.
38. HCF by prime Factorization method

First, we have to find the highest common Factor of 26,65 and 117
Now let us write the prime factors of 26,65 , and 117.

$$
\begin{align*}
26 & =2 \times 13 \\
65 & =5 \times 13 \\
117 & =3 \times 3 \times 13 \tag{11/2}
\end{align*}
$$

The common factor of 26,65 , and 117 is 13
Therefore, $\operatorname{HCF}(26,65,117)=13$
LCM by prime factorization method
To calculate the LCM of 26, 65 and 117
First, list the common factors of each number

$$
\begin{align*}
26 & =2 \times 13 \\
65 & =5 \times 13 \\
117 & =3 \times 3 \times 13 \\
\text { LCM } & =2 \times 5 \times 3 \times 3 \times 13 \\
& =1170 \tag{11/2}
\end{align*}
$$

39. We know, By Euclid's Division Lemma,

If a and b are two positive integers, then

$$
\begin{equation*}
a=b q+r \text { where } 0 \leq r<b \tag{1}
\end{equation*}
$$

Let a be any positive integer and $b=3$, using equation 1 , we get,
$a=3 q+r$ where $0 \leq r<3$
We know can be either 0,1 or 2

If $r=0$	If $r=1$	If $r=2$
The equation becomes,	The equation becomes,	The equation becomes,
$a=3 q+0$	$a=3 q+1$	$a=3 q+2$
$\Rightarrow a=3 q$	Squaring both sides,	Squaring both sides,
Squaring both sides,	$a^{2}=(3 q+1)^{2}$	$a^{2}=(3 q+2)^{2}$
$a^{2}=(3 q)^{2}$	$\Rightarrow a^{2}=9 q^{2}+6 q+1$	$\Rightarrow a^{2}=9 q^{2}+12 q+4$
$\Rightarrow a^{2}=9 q^{2}$	$\Rightarrow a^{2}=3\left(3 q^{2}+2 q\right)+1$	$\Rightarrow a^{2}=9 q^{2}+12 q+3+1$
$\Rightarrow a^{2}=3\left(3 q^{2}\right)$	Let $m=3 q^{2}+2 q$	$\Rightarrow a^{2}=3\left(3 q^{2}+4 q+1\right)+1$
Let $m=3 q^{2}$	$\Rightarrow a^{2}=3 m+1$	Let $m=3 q^{2}+4 q+1$
$\Rightarrow a^{2}=3 m$		$\Rightarrow a^{2}=3 m+1$

Hence, square of any positive number can be expressed of the form $3 m$ or $3 m+1$ for some integer m.
Hence proved.

MULTIPLE CHOICE QUESTIONS

1. Euclid's division lemma states that for two positive integers a and b, there exist unique integers q and r such that $a=b q+r$, where r must satisfy
(a) $1<\mathrm{r}<\mathrm{b}$
(b) $0<\mathrm{r} \leq \mathrm{b}$
(c) $0 \leq \mathrm{r}<\mathrm{b}$
(d) $0<r<b$
2. The LCM of two numbers is 1200 . Which of the following cannot be their HCF?
(a) 600
(b) 500
(c) 400
(d) 200
3. If two positive integers a and b are expressible in the form $\mathrm{a}=\mathrm{pq}^{2}$ and $\mathrm{b}=\mathrm{p}^{3} \mathrm{q} ; \mathrm{p}, \mathrm{q}$ being prime numbers, then $\operatorname{LCM}(a, b)$ is
(a) pq
(b) $\mathrm{p}^{3} \mathrm{q}^{3}$
(c) $\mathrm{p}^{3} \mathrm{q}^{2}$
(d) $\mathrm{p}^{2} \mathrm{q}^{2}$
4. In question $3, \operatorname{HCF}(a, b)$ is.
(a) pq
(b) $\mathrm{p}^{3} \mathrm{q}^{3}$
(c) $\mathrm{p}^{3} \mathrm{q}^{2}$
(d) $\mathrm{p}^{2} \mathrm{q}^{2}$
5. If the LCM of a and 18 is 36 and the HCF of a and 18 is 2 , then $\mathrm{a}=$
(a) 2
(b) 3
(c) 4
(d) 1
6. If HCF of 26 and 169 is 13 , then LCM of 26 and 169 be.
(a) 26
(b) 52
(c) 338
(d) 13
7. The LCM and HCF of two rational numbers are equal, then the numbers must be
(a) prime
(b) Co-prime
(c) composite
(d) equal
8. If the sum of LCM and HCF of two numbers is 1260 and their LCM is 900 more than their HCF, then the product of two numbers is
(a) 203400
(b) 194400
(c) 198400
(d) 205400
9. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is.
(a) 10
(b) 100
(c) 504
(d) 2520
10. The largest number which divides 70 and 125 , leaving remainders 5 and 8 respectively is
(a) 13
(b) 65
(c) 875
(d) 1750
11. For some integer m, every even integer is of the form
(a) m
(b) $\mathrm{m}+1$
(c) 2 m
(d) $2 \mathrm{~m}+1$
12. For some integer q, every odd integer is of the form
(a) q
(b) $\mathrm{q}+1$
(c) 2 q
(d) $2 q+1$

Answer Keys

1. (c)
2. (b)
3. (c)
4. (a)
5. (c)
6. (c)
7. (d)
8. (b)
9. (d)
10. (a)
11. (c)
12. (d)

Solutions

1. Euclid's division lemma states that for two positive integers a and b there exist unique integers q and r such that $a=b q+r$, where r must satisfy 0 $\leq \mathrm{r}<\mathrm{b}$
[1]
2. 500 cannot be their HCF because 1200 can not be completed divided by 500 .
3. $\mathrm{a}=\mathrm{pq}^{2}$
$\mathrm{b}=\mathrm{p}^{3} \mathrm{q}$
$\operatorname{LCM}(a, b)=p^{3} q^{2}$.
4. $\mathrm{a}=\mathrm{pq}^{2}=\mathrm{p} \times \mathrm{q} \times \mathrm{q}$
$b=p^{3} q=p \times p \times p \times q$
\therefore Required HCF $(\mathrm{a}, \mathrm{b})=\mathrm{pq}$
5. \because We know that

LCM \times HCF $=$ first number \times second number
$36 \times 2=a \times 18$

$$
\begin{equation*}
\Rightarrow \mathrm{a}=\frac{36 \times 2}{18}=4 \tag{1}
\end{equation*}
$$

6. \because We know that
$\mathrm{LCM} \times \mathrm{HCF}=$ First number \times second number
$13 \times$ LCM $=26 \times 169$
$\mathrm{LCM}=\frac{26 \times 169}{13}=338$
7. If LCM and HCF of two rational numbers are equal then the numbers must be equal.
8. According to the question.
\because LCM $=900+\mathrm{HCF}$
LCM $-\mathrm{HCF}=900 \ldots$ (i)
and $\mathrm{LCM}+\mathrm{HCF}=1260$
Solving eq (i) and (ii), we get,
$2 \mathrm{LCM}=2160$
$\Rightarrow \mathrm{LCM}=\frac{2160}{2}=1080$
Putting the value of LCM in eq. (ii), we get
$\mathrm{HCF}=1260-1080=180$
\because Product of two numbers $=\mathrm{LCM} \times \mathrm{HCF}$
$=1080 \times 180=194400$
9. Required number $=\mathrm{LCM}$ of $1,2,3,4,5,---10$
$=2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 7=2520$
10. Required number
$=\mathrm{HCF}$ of $(70-5)$ and $(125-8)$
$=\mathrm{HCF}$ of 65 and $117=13$
11. Some integer m, every even integer is of the form of 2 m .
12. for some integer q, every odd integer is of the form $(2 q+1)$.

[TOPIC 2] Irrational Numbers, Terminating and Non-Terminating Recurring Decimals

Summary

Irrational Numbers

All real numbers which are not rational are called irrational numbers. $\sqrt{2}, \sqrt[3]{3},-\sqrt{5}$ are some examples of irrational numbers.
There are decimals which are non-terminating and non-recurring decimal.
Example: 0.303003000300003...
Hence, we can conclude that
An irrational number is a non-terminating and non-recurring decimal and cannot be put in the form $\frac{p}{q}$ where p and q are both co-prime integers and $q \neq 0$.

Decimal Representation of Rational Numbers

Theorem: Let $x=\frac{p}{q}$ be a rational number such that $q \neq 0$ and prime factorization of q is of the form $2^{n} \times 5^{m}$ where m, n are non-negative integers then x has a decimal representation which terminates.
For example : $0.275=\frac{275}{10^{3}}=\frac{5^{2} \times 11}{2^{3} \times 5^{3}}=\frac{11}{2^{3} \times 5}=\frac{11}{40}$
Theorem: Let $x=\frac{p}{q}$ be a rational number such that $q \neq 0$ and prime factorization of q is not of the form $2^{m} \times 5^{n}$, where m, n are non-negative integers, then x has a decimal expansion which is non-terminating repeating.
For example : $\frac{5}{3}=1.66666 \ldots$

Rational number	Form of prime factorisation of the denominator	Decimal expansion of rational number
$x=\frac{p}{q}$, where p and q are coprime and $q \neq 0$	$q=2^{m} 5^{n}$ where n and m are non-negative integers	terminating
	$q \neq 2^{m} 5^{n}$ where n and m are non-negative integers	non-terminating

- If the denominator is of the form $2^{m} \times 5^{n}$ for some non negative integer m and n, then rational number has terminating decimal otherwise non terminating.

PREVIOUS YEARS'

EXAMINATION QUESTIONS

TOPIC 2

回1 Mark Questions

1. The prime factorization of the denominator of the rational number expressed as $46 . \overline{123}$ is:
(a) $2^{m} \times 5^{n}$ Where m and n are integers
(b) $2^{m} \times 5^{n}$ Where m and n are positive integers
(c) $2^{m} \times 5^{n}$ Where m and n are rational numbers
(d) Not of the form $2^{m} \times 5^{n}$ where m and n are non-negative integers.
[TERM 1, 2011]
2. The decimal expansion of $\frac{6}{1250}$ will terminate after how many places of decimal?
(a) 1
(b) 2
(c) 3
(d) 4
[TERM 1, 2011]
3. Decimal expansion of $\frac{23}{\left(2^{3} 5^{2}\right)}$ will be:
(a) Terminating
(b) Non- terminating
(c) Non terminating and repeating.
(d) Non-terminating and non-repeating
[TERM 1, 2012]
4. Find a rational number between $\sqrt{2}$ and $\sqrt{7}$.
[2019]
5. $\frac{57}{300}$ is a
(a) non-terminating and non-repeating decimal expansion
(b) terminating decimal expansion after 2 places of decimals
(c) terminating decimal expansion after 3 places of decimals
(d) non-terminating but repeated decimal expansion
[Basic Term 1, 2022]
6. $5 . \overline{213}$ can also be written as
(a) 5.213213213...
(b) $5.2131313 \ldots$
(c) 5.213
(d) $5213 / 1000$
[Basic Term 1, 2022]
7. The decimal expansion of $\frac{13}{2 \times 5^{2} \times 7}$ is
(a) terminating after 1 decimal place
(b) non-terminating and non-repeating
(c) terminating after 2 decimal places
(d) non-terminating but repeating
[Basic Term 1, 2022]
8. Assertion - Reason Based Questions: A statement of Assertion (A) is followed by a statement of Reason (R)

Statement A (Assertion): If $5+\sqrt{7}$ is a root of a quadratic equation with rational co-efficients, then its other root is $5-\sqrt{7}$.

Statement R (Reason): Surd roots of a quadratic equation with rational co-efficients occur in conjugate pairs.
Choose the correct option out of the following:
(a) Both Assertion (A) and Reason (R) are true; and Reason (R) is the correct explanation of Assertion (A).
(b) Both Assertion (A) and Reason (R) are true; but Reason (R) is not the correct explanation of Assertion (A).
(c) Assertion (A) is true but Reason (R) is false.
(d) Assertion (A) is false but Reason (R) is true.
[Standard, 2023]
9. The number $(5-3 \sqrt{5}+\sqrt{5})$ is :
(a) an integer
(b) a rational number
(c) an irrational number
(d) a whole number
[Basic, 2023]

■2 Marks Questions

10. What can you say about the prime factorization of the denominator of the rational number 0.134 when written in the form $\frac{p}{q}$. Is it of form $2^{m} \times 5^{n}$? If yes, write the values of m and n.
[TERM 1, 2013]
11. Find the smallest positive rational number by which $\frac{1}{7}$ should be multiplied so that its decimal expansion terminates after 2 places of decimal.
[TERM 1, 2011]
12. Show that $(\sqrt{3}+\sqrt{5})^{2}$ is an irrational number.
[TERM 1, 2015]
13. Write down the decimal expansion of $\frac{76}{6250}$, without actual division.
[TERM 1, 2016]
14. Find how many integers between 200 and 500 are divisible by 8 .
[TERM 1, 2017]
15. Given that $\sqrt{2}$ is irrational, prove that $(5+3 \sqrt{2})$ is an irrational number.
[TERM 1, 2017]
16. Prove that $\sqrt{3}+\sqrt{2}$ is irrational.
[TERM 1, 2011]

D 3 Marks Question

17. Prove that $(3+2 \sqrt{5})$ is an irrational number, given that $\sqrt{5}$ is an irrational number. [2019]
18. Prove that $\sqrt{3}$ is an irrational number.
[Basic, 2020]
19. Prove that $\sqrt{2}$ is an irrational number.
[Standard, 2023]

D 4 Marks Questions

20. Define irrational number and prove that $3+\sqrt[2]{5}$ is an irrational number.
[TERM 1, 2017]
21. Prove that $\sqrt{5}$ is an irrational number.
[Standard, 2020]

Solutions

1. As the decimal expansion $46 . \overline{123}$ is a nonterminating repeating, the given number is a rational number of the form $\frac{p}{q}$ where q is not of the form $2^{m} \times 5^{n}$.

$$
\begin{array}{lr}
\text { Let } \begin{aligned}
\mathrm{x} & =46 . \overline{123} \\
1000 \mathrm{x} & =46123 . \overline{123} \\
(2)-(1) \Rightarrow \quad \frac{46077}{999} & =x
\end{aligned} r l
\end{array}
$$

Hence, the correct option is (d).
2. Express 6 and 1250 as a product of prime factors.
$\frac{6}{1250}=\frac{2 \times 3}{2 \times 5^{4}}$
$\Rightarrow \frac{6}{1250}=\frac{2 \times 3}{2 \times 5^{4}} \times \frac{2^{3}}{2^{3}}=\frac{48}{5^{4} \times 2^{4}}$
$\Rightarrow \frac{6}{1250}=\frac{48}{(5 \times 2)^{4}}=\frac{48}{10000}=0.0048$
Hence, decimal expansion terminates after 4 places of decimal. The correct option is (d). [1]
3. We know by a theorem that, If $x=\frac{p}{q}$ be a rational number, such that the prime factorization of q is in the form $2^{n} 5^{m}$, where n, m are non-negative integers. Then x has a decimal expansion which terminates. [1⁄2]
Hence, Decimal expansion of $\frac{23}{2^{3} 5^{2}}$ will be terminating
So, the correct option is (α).
4. $\because \sqrt{2}=1.414$ and $\sqrt{7}=2.645$
\therefore Rational number between $\sqrt{2}$ and $\sqrt{7}=2$
5. (b) Terminating decimal expansion after 2 places of decimals.

Here $\frac{57}{300}$ can be written as $=\frac{57}{2^{2} \times 3^{1} \times 5^{2}}$
Further, it can be written as
$\frac{19}{2^{2} \times 5^{2}}=\frac{19}{100}=0.19$

Since, the denominator is of the form $2^{\mathrm{m}} \times 5^{\mathrm{n}}$, the decimal expansion will be terminating.
Therefore, it is terminating decimal expansion after 2 decimal places.
[1]
6. (a) Bar present on 213 in $5 . \overline{213}$ means 213 is repeated multiple times.
[1]
7. (d) The denominator of $\frac{13}{2 \times 5^{2} \times 7}$ is not of the form $2^{\mathrm{m}} \times 5^{\mathrm{n}}$, so, its decimal expansion is nonterminating but repeating.
8. (a)
9. (c) an irrational number
10. Let $\mathrm{x}=0.134$

Now, $100 x=134.134$
Subtract eqn (1) from (2) We get,
$999 x=134$
$x=\frac{134}{999}$
$x=\frac{134}{9(111)}$
$x=\frac{134}{3^{2}(111)}$
The above expression can-not be written as $2^{m} \times 5^{n}$.
11. Decimal expansion of a any rational number terminates if the denominator of the rational number is in the form $2^{n} 5^{m}$
Let the number multiplied by $\frac{1}{7}$ be x,
$\frac{1}{7} \times x=\frac{1}{2^{n} 5^{m}}$
$\therefore x=\frac{7}{2^{n} 5^{m}}$
Now here when $n=2$ and $m=0$
$x=\frac{7}{2^{2} 5^{0}}=\frac{7}{4}$
When $n=0, m=2$
Now if we put $n=2$ and $m=2$,
We have $x=\frac{7}{2^{2} 5^{2}}=\frac{7}{100}$
Hence we can see that $\frac{7}{100}$ is smallest possible rational number we multiply by $\frac{1}{7}$ so that the decimal expansion will terminate after 2 decimal places.
12. Let $(\sqrt{3}+\sqrt{5})^{2}$ is a rational number.
$\Rightarrow(\sqrt{3}+\sqrt{5})^{2}=\frac{p}{q} \quad$ Where p, q are co-prime
Using $(a+b)^{2}=a^{2}+b^{2}+2 a b$ we get,
$(\sqrt{3})^{2}+(\sqrt{5})+2 \sqrt{3} \sqrt{5}=\frac{p}{q}$
$\Rightarrow 3+5+2 \sqrt{15}=\frac{p}{q} \Rightarrow 8+2 \sqrt{15}=\frac{p}{q}$
$\Rightarrow 2 \sqrt{15}=\frac{p}{q}-8 \Rightarrow \sqrt{15}=\frac{1}{2}\left(\frac{p}{q}-8\right)$
$\Rightarrow \sqrt{15}=\left(\frac{p}{2 q}-4\right)$
The RHS is the difference of two rational numbers.
Therefore LHS will also be rational.
But we know that $\sqrt{15}$ is irrational.
So our assumption is wrong.
Hence, $(\sqrt{3}+\sqrt{5})^{2}$ is an irrational number.
13. $\frac{76}{6250}=\frac{76}{5^{5} \times 2}$

Here,
$\frac{76}{6250}$ is in the form of $\frac{\mathrm{p}}{\mathrm{q}}$ and q is in the form of $2^{n} 5^{m}$ where n and m are non - negative integers.
Hence $\frac{76}{6250}$ has terminating decimal expression.
Now,
$\frac{76}{6250}=\frac{76}{5^{5} \times 2}=\frac{76 \times 2^{4}}{5^{5} \times 2 \times 2^{4}}=\frac{76 \times 16}{10^{5}}=\frac{1216}{100000}$
$=0.01216$
Thus the decimal expansion of $\frac{76}{6250}$ is 0.01216 .
14. The first number that is divisible by 8 between 200 and 500 is 208 and the last number that is divisible by 8 are 496 .
So, the sequence will be 208, 216, 224 . 496.

Common difference $d=8$
First term $a=208$
Let there be n terms is the sequence
Using the formula $a_{n}=a+(n-1) d$
Where $a_{n}=496, a=208$ and $d=8$
$496=208+(n-1)(8)$
$(n-1) 8=288$
$n-1=36$
$n=37$
Hence, between 200 and 500 there are 37 integers that are divisible by 8 .
[1]
15. Suppose $(5+3 \sqrt{2})=\frac{p}{q}$

Now assume $(5+3 \sqrt{2})$ is a rational number.
Therefore p and q should be co-prime numbers.
$(5+3 \sqrt{2})=\frac{p}{q}$
$\Rightarrow \frac{p}{q}-5=3 \sqrt{2}$
$\Rightarrow \frac{p}{3 q}-\frac{5}{3}=\sqrt{2}$
$\Rightarrow \frac{p-5}{3 q}=\sqrt{2}$
Since $\sqrt{2}$ is irrational number.
Thus the assumption is incorrect and hence $(5+3 \sqrt{2})$ is an irrational number.

Hence proved.
16. Let $\sqrt{3}$ is a rational number. So, two integers a and b can be found so that $\sqrt{3}=\frac{a}{b}$

Assume that a and are co-prime.
$\Rightarrow a=\sqrt{3} b$
Squaring both the sides,
$\Rightarrow a^{2}=3 b^{2}$
So, a^{2} is divisible by 3 and it can be said that a is divisible by 3 .
Let $a^{2}=3 c$, where c is an integer.
$a^{2}=3 b^{2}$
$\Rightarrow(3 c)^{2}=3 b^{2} \Rightarrow b^{2}=3 c^{2}$
So, b^{2} is divisible by 3 and it can be said that b is divisible by 3 .

This means that a and b have 3 as a common factor which is a contradiction to fact that a and b are co-prime.

Hence, $\sqrt{3}$ cannot be expressed as $\frac{p}{q}$ or $\sqrt{3}$ is irrational.

Similarly, $\sqrt{2}$ is irrational. The sum of two irrational numbers is an irrational number.
$\sqrt{3}+\sqrt{2}$ is sum of two irrational numbers, hence it is an irrational number.
Hence proved.
17. If possible, let $\mathrm{a}=(3+2 \sqrt{5})$ be a rational number On squaring both sides, we get
$\mathrm{a}^{2}=(3+2 \sqrt{5})^{2}$
$\Rightarrow \mathrm{a}^{2}=9+20+12 \sqrt{5}$
$\Rightarrow \mathrm{a}^{2}=29+12 \sqrt{5}$
$\Rightarrow \sqrt{5}=\frac{a^{2}-29}{12}$
since ' a ' is a rational number,
$\therefore \frac{\mathrm{a}^{2}-29}{12}$ is also a rational number
$\Rightarrow \sqrt{5}$ is a rational number
but It is given that $\sqrt{5}$ is an irrational number.
Hence, it is a contradiction
So, $3+2 \sqrt{5}$ is an irrational number.
18. Let $\sqrt{3}$ be a rational number, then its simplest form is $\frac{a}{b}$ (where a and b are co-primes)
$(\sqrt{3})^{2}=\frac{a^{2}}{b^{2}}$
$\Rightarrow \mathrm{a}^{2}=3 \mathrm{~b}^{2}$
$\Rightarrow 3$ divides a^{2}
$\Rightarrow 3$ divides a
Let $\mathrm{a}=3 \mathrm{c}$, for some integer c
Putting $\mathrm{a}=3 \mathrm{c}$ in (1),
$3 b^{2}=9 c^{2}$
$\Rightarrow \mathrm{b}^{2}=3 \mathrm{c}^{2}$
$\Rightarrow 3$ divides b^{2}
$\Rightarrow 3$ divides b
Thus, 3 is a common factor of a and b

But this is not possible as a and b are co-primes
\Rightarrow Our assumption that $\sqrt{3}$ is rational is wrong
$\Rightarrow \sqrt{3}$ is irrational
19. Let assume on the contrary that $\sqrt{2}$ is a rational number.
Then, there exists positive integer a and b such that $\sqrt{2}=\frac{\mathrm{a}}{\mathrm{b}}$ where, a and b are co primes i.e. their HCF is 1.
$\Rightarrow \sqrt{2}=\left(\frac{\mathrm{a}}{\mathrm{b}}\right)^{2}$
$\Rightarrow 2=\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}$
$\Rightarrow \mathrm{a}^{2}=2 \mathrm{~b}^{2}$
$\Rightarrow \mathrm{a}^{2}$ is multiple of 2
\Rightarrow a is a multiple of 2
$\Rightarrow \mathrm{a}=2 \mathrm{c}$ for some integer c .
$\Rightarrow \mathrm{a}^{2}=4 \mathrm{c}^{2}$
$\Rightarrow 2 \mathrm{~b}^{2}=4 \mathrm{c}^{2}$
$\Rightarrow \mathrm{b}^{2}=2 \mathrm{c}^{2}$
$\Rightarrow \mathrm{b}^{2}$ is a multiple of 2
b is a multiple of 2...(ii)
From (i) and (ii), a and b have at least 2 as a common factor. But this contradicts the fact that a and b are co-prime. This means that $\sqrt{2}$ is an irrational number.
[1]
20. Irrational numbers: are those numbers that cannot be written in form $\frac{p}{q}$ where p and q are integers and $q \neq 0$. In other words, these are the numbers whose decimal expansion is nonterminating and non-repeating.
Let $3+\sqrt[2]{5}$ be a rational number
[1]
\therefore We can find two integers $a, b(b \neq 0)$ such that
$3+\sqrt[2]{5}=\frac{a}{b}$
[1]
$\sqrt[2]{5}=\frac{a}{b}-3$

Since a and b are integers, $\frac{a}{b}-3$ is also a rational number and hence $\sqrt[2]{5}$ should be rational. [1] This contradicts the fact that $\sqrt[2]{5}$ is irrational.
Therefore, our assumption s wrong and hence, $3+\sqrt[2]{5}$ is an irrational number.
21. Let $\sqrt{5}$ be a rational number.

Then it is of the form $\frac{a}{b}$, where a and b are coprime.
Now, $\quad \sqrt{5}=\frac{a}{b}$
$\Rightarrow \quad 5=\frac{a^{2}}{b^{2}}$
$\Rightarrow \quad a^{2}=5 b^{2}$
$\Rightarrow \quad 5$ divides a^{2}
$\Rightarrow \quad 5$ divides a
Let $a=5 c$ for some integer c
Putting $a=5 c$ in (i),

$$
\begin{align*}
& 5 b^{2}=25 c^{2} \\
\Rightarrow & b^{2}=5 c^{2} \\
\Rightarrow & 5 \text { divides } b^{2} \\
\Rightarrow & 5 \text { divides } b \tag{11/2}
\end{align*}
$$

Thus 5 is a common factor of a and b.
But this is not possible as a and b are co-primes.
\Rightarrow Our assumption that $\sqrt{5}$ is rational is wrong.
$\Rightarrow \sqrt{5}$ is an irrational number.

MULTIPLE CHOICE QUESTIONS

1. Which of the following number are irrational.
(a) $\sqrt{25}$
(b) $\sqrt{9}$
(c) $\sqrt{5}$
(d) 2
2. The number of decimal places after which the decimal expansion of the rational number $\frac{23}{2^{2} \times 5}$ will terminate, is
(a) 1
(b) 2
(c) 3
(d) 4
3. The decimal expansion of the rational number $\frac{14587}{1250}$ will terminate after
(a) one decimal place
(b) two decimal place
(c) three decimal place
(d) four decimal place
4. Which of the following rational numbers have terminating decimal?
(a) $\frac{5}{18}$
(b) $\frac{16}{225}$
(c) $\frac{7}{250}$
(d) $\frac{2}{21}$
5. $3 . \overline{27}$ is
(a) an integer
(b) a natural number
(c) a rational number
(d) an irrational number
6. The smallest number by which $\sqrt{27}$ should be divided so as to get a rational number.
(a) $\sqrt{27}$
(b) $\sqrt{3}$
(c) $3 \sqrt{3}$
(d) 3
7. The smallest rational number by which $\frac{1}{3}$ should be multiplied so that its decimal expansion terminates after one place of decimal, is
(a) $\frac{3}{10}$
(b) $\frac{1}{10}$
(c) $\frac{3}{100}$
(d) 3
8. The decimal expansion of the rational number $\frac{33}{15}$ will terminate after.
(a) one decimal place
(b) two decimal place
(c) three decimal place
(d) More then three decimal place
9. $\sqrt{3}+\sqrt{2}$ is
(a) rational number
(b) irrational number
(c) prime number
(d) composite number
10. The decimal expansion of the rational number $\frac{14587}{1250}$ will terminate after.
(a) one decimal place
(b) two decimal place
(c) three decimal place
(d) four decimal place

Answer Keys

1. (c)
2. (b)
3. (d)
4. (c)
5. (c)
6. (b)
7. (a)
8. (a)
9. (b)
10. (d)

-Solutions

1. $\sqrt{25}=5$
$\sqrt{9}=3$
$\sqrt{5}=2.236067$
So $\sqrt{5}$ is an irrational number.
2. $\frac{23}{2^{2} \times 5}=\frac{23}{20}=1.15$

So, the given expression will terminate after 2 decimal place.
3. $\frac{14587}{1250}=11.6696$

So, the given expression will terminate after 4 decimal place.
4. $\frac{5}{18}=0.2777 \ldots$
$\frac{16}{225}=0.071111 \ldots$
$\frac{7}{250}=0.028$
$\frac{2}{21}=0.0952380 \ldots$
So, $\frac{7}{250}$ have terminating decimal.
5. $3 . \overline{27}$

Let $\mathrm{x}=3 . \overline{27}$
Then $\mathrm{x}=3.2727$
On multiplying by 100 on both side.
$100 \mathrm{x}=327.27---$
$\Rightarrow 100 \mathrm{x}=324+3.272727 \ldots$
$\Rightarrow 100 \mathrm{x}=324+\mathrm{x} \quad$ (from eq. (i))
$\Rightarrow 100 \mathrm{x}-\mathrm{x}=324$
$\Rightarrow 99 \mathrm{x}=324$
$\Rightarrow \mathrm{x}=\frac{324}{99}=\frac{36}{11}$
So, $3 . \overline{27}$ is a rational number.
6. $\because \sqrt{27}=\sqrt{3 \times 3 \times 3}$
$=3 \sqrt{3}$
On divide by $\sqrt{3}$
$\frac{3 \sqrt{3}}{\sqrt{3}}=3$ (rational number)
So, $\sqrt{27}$ is divided by $\sqrt{3}$ to get a rational number.
7. $\because \frac{1}{3}=\frac{1}{3} \times \frac{3}{10}=\frac{1}{10}=0.1$
$\therefore \frac{1}{3}$ should be multiplied by $\frac{3}{10}$, so that its decimal expansion terminates after one place of decimal.
8. $\frac{33}{15}=2.2$

So, the given expression is terminating after one decimal place.
9. $\because \sqrt{3}$ is an irrational number and $\sqrt{2}$ is also an irrational number and addition of two irrational number is also irrational $\therefore(\sqrt{3}+\sqrt{2})$ is an irrational.
10. $\frac{14587}{1250}=11.6696$

So, the given expression terminates after four decimal place.
[1]

