

Graduate Aptitude Test in Engineering

Topic-wise
 Previous Solved Papers
 25 Years' Solved Papers

Mechanical Engineering

```
Title : GATE 2025 : Mechanical Engineering - 25 Years' Topic-wise Previous Solved Papers
Language : English
Editor's Name : GKP Editorial Team
Copyright © : 2025 CLIP
```

No part of this book may be reproduced in a retrieval system or transmitted, in any form or by any means, electronics, mechanical, photocopying, recording, scanning and or without the written permission of the Author/Publisher.

Typeset \& Published by :

Career Launcher Infrastructure (P) Ltd.

A-45, Mohan Cooperative Industrial Area, Near Mohan Estate Metro Station, New Delhi - 110044

Marketed by :

G.K. Publications (P) Ltd.

Plot No. 63, Sector-27A, Near Sector - 28 Metro Station, Faridabad, Haryana-121003
ISBN : 978-93-5681-511-7
Printer's Details : Printed in India, New Delhi.

For product information :
Visit www.gkpublications.com or email to gkp@gkpublications.com

Contents

- Preface
 - About GATE
 - GATE Syllabus
 - Chapter-Wise Analysis
 Solved Papers (Topic-Wise)

Unit I Engineering Mathematics

1. Linear Algebra

Algebra of Matrices 1.1
Determinant and Inverse 1.2
Rank and System of Linear Equations 1.3
Eigen Values and Eigen Vectors 1.4
Answers 1.6
Explanations 1.7
2. Calculus $2.1-2.22$

Limit and Continuity 2.1
Differentiability and Applications of
Derivative 2.2
Integral Calculus and Application 2.3
Vector Calculus and Application 2.6
Answers 2.9
Explanations
2.10
3. Differential Equation 3.1 - 3.12

1st Order Differential Equation 3.1
nth Order Differential Equation 3.2
Partial Differentiation and Its Application 3.4
Answers 3.4
Explanations 3.5
4. Complex Variables 4.1 - 4.8

Complex Function and Derivatives 4.1
Complex Integral and Analytic Function 4.2
Cauchy's Integral Theorem and Residues 4.3
Answers 4.4
Explanations 4.4
5. Probability and Statistics $5.1-5.8$

Fundamentals of Probability 5.1
Probability Distribution 5.3
Statistics 5.4
Answers 5.4
Explanations 5.5
6. Numerical Methods
6.1-6.9

Numerical Solutions of Non-linear Equations
6.1

Numerical Solution of Ordinary Differential
Equations 6.2
Numerical Integration 6.2
Answers 6.4
Explanations 6.4
7. Transform Theory 7.1-7.6

Laplace Transform 7.1
Inverse of Laplace Transform 7.2
Fourier Transform 7.3
Answers 7.3
Explanations 7.4

Unit II Engineering Mechanics

1. FBD, Equilibrium, Plane Trusses and
Virtual Work 1.1 - 1.14

Free Body Diagram 1.1
Equilibrium 1.2
Truss 1.4
Virtual Work 1.7
Answers 1.7
Explanations 1.8
2. Translational and Rotational motion 2.1-2.6

Translational motion 2.1
Rotational motion 2.2
Answers 2.4
Explanations 2.4
3. Friction 3.1 - 3.6

Friction 3.1
Answers 3.3
Explanations 3.4
4. Impulse and Momentum, Work and Energy 4.1 - 4.10

Impact and Collision
4.1
Impulse and Momentum 4.1
Work and Energy 4.3
Answers 4.4
Explanations 4.5
5. Plane Motion 5.1-5.4
Plane Motion 5.1
Answers 5.2
Explanations 5.3
Unit III Strength of Materials1. Stress and Strain$1.1-1.12$
Stress-strain Relationship, Hooke's law 1.1
Poisson's Ratio 1.3
Elastic Constants 1.3
Principle of Superposition 1.4
Thermal Stresses 1.5
Answers 1.7
Explanations 1.7
2. Principal Stress and Strain 2.1-2.4
Principal Stress 2.1
Theories of Failure 2.2
Answers 2.2
Explanations 2.3
3. Mohr's Circle 3.1-3.4
Mohr's Circle for Plane Stress 3.1
Answers 3.2
Explanations 3.3
4. Thin Cylinder 4.1-4.4
Thin Cylindrical Pressure Vessel 4.1
Thin Spherical Pressure Vessel 4.2
Answers 4.2
Explanations 4.3
5. Shear-force and Bending Moment Diagrams5.1-5.7
Shear Force Diagram 5.1
Bending Moment Diagram 5.1
Answers 5.3
Explanations 5.4
6. Bending of Beams 6.1-6.10
Bending Stress in Beam and Moment of Inertia 6.1
Shear Stress in Beam 6.4
Answers 6.5
Explanations 6.5
7. Torsion of shafts $7.1-7.8$

Shear Stress in Shaft 7.1
Composite Shafts 7.2
Torsional Strain Energy 7.3
Answers 7.4
Explanations 7.4
8. Springs $8.1-8.2$

Springs 8.1
Answers 8.1
Explanations 8.2
9. Euler's Theory of Column 9.1-9.4

Axial Loading 9.1
Slenderness Ratio 9.2
Answers 9.2
Explanations 9.3
10. Strain Energy and Thermal Stresses
10.1-10.8

Deflection 10.1
Slope 10.3
Strain Energy 10.4
Answers 10.4
Explanations 10.5

Unit IV Theory of Machines

1. Planar Mechanisms 1.1-1.8

Kinematic pair, Kinematic chain and Inversions1.1
Mechanism (Four Bar, Single Slider andDouble Slider)1.2
Degrees of Freedom 1.5
Answers 1.5
Explanations 1.6
2. Velocity \& Acceleration Analysis 2.1-2.8
Velocity Analysis 2.1
Acceleration Analysis 2.3
Instantaneous Centre 2.4
Answers 2.5
Explanations 2.5
3. Cams and Follower 3.1-3.4
Motion of Follower 3.1
Terminology 3.2
Answers 3.2
Explanations 3.3
4. Dynamic Analysis of Slider-crank Mechanism 4.1-4.2

Motion of Links 4.1

Dynamic Force Analysis 4.1
Answers 4.1
Explanations
4.2
5. Gear and Gear Train 5.1-5.9

Gear Terminology and Profile, Classification

Gear Train 5.2
Answers 5.5
Explanations 5.5
6. Fly Wheel
6.1-6.5

Mean Speed of Rotation
6.1

Energy Fluctuation
6.1

Turning Moment Diagram
6.1

Answers 6.2
Explanations 6.3
7. Vibration 7.1 - 7.26

Damped \& Undamped Vibration 7.1
Forced Vibration 7.6
Transmissibility 7.10
Torsional Vibration \& Critical Speed of Shaft
7.11

Answers
7.12

Explanations
7.12
8. Balancing and Gyroscope 8.1 - 8.4

Balancing
8.1

Gyroscope 8.2
Answers 8.3
Explanations 8.3

Unit V Machine Design

1. Static, Dynamic Loading and Failure

Theories
1.1-1.8

Static loading 1.1
Dynamic loading 1.1
Failure Theory 1.2
Answers 1.4
Explanations 1.5
2. Fatigue Strength and S-N Diagram 2.1-2.4

Fatigue Strength 2.1
S-N Diagram 2.1
Answers 2.2
Explanations 2.3
3. Bolted, Riveted and Welded Joint 3.1-3.7

Bolted Joint 3.1
Riveted Joint 3.2
Welded Joint 3.3
Answers 3.3
Explanations 3.4
4. Bearings, Shafts and Keys 4.1-4.4

Bearing 4.1
Shaft Design 4.2
Keys 4.2
Answers 4.2
Explanations 4.3
5. Gears $5.1-5.6$

Classification 5.1
Standard Systems of Gear Teeth 5.1
Dynamic loading in Gears 5.2
Answers 5.3
Explanations 5.4
6. Brakes, Clutches and Ropes 6.1-6.6

Brakes 6.1
Clutches 6.3
Ropes 6.3
Answers 6.3
Explanations 6.4

Unit VI $\begin{array}{l}\text { Fluid Mechanics and Hydraulic } \\ \text { Machinery } \\ \text { 1. Fluid Properties } \\ \text { Basic Properties } \\ \text { Viscosity } \\ \text { Answers } \\ \text { Explanations } \\ \text { 2. } \quad \text { Fluid Statics }\end{array} 1.2$
1.1

Fluid pressure and Its Measurement 2.1
Hydrostatic Forces 2.2
Buoyancy and Floatation 2.2
Answers 2.4
Explanations 2.4
3. Fluid Kinematics $3.1-3.12$

Fluid Velocity 3.1
Fluid Acceleration 3.2
Types of Fluid Flow 3.3
Fluid Flow Lines and Application 3.4
Answers 3.5
Explanations 3.6
4. Fluid Dynamics
$4.1-4.10$
Bernoulli's Equation, Conservation of Energy and Mass 4.1

Flow Measuring Devices 4.2
Flow Through Orifice and Mouthpiece 4.3
Answers 4.5
Explanations 4.5
5. Viscous, Turbulent Flow and Boundary Layer

Theory
$5.1-5.14$
Viscous Flow 5.1
Turbulent Flow 5.4
Boundary Layer Theory 5.5
Answers 5.7
Explanations 5.7
6. Flow Through Pipes 6.1-6.7

Losses in Pipes 6.1
Flow Through Siphon 6.2
Power Transmission 6.3
Answers 6.3
Explanations 6.4
7. Turbines and Pumps 7.1-7.10

Turbines 7.1
$\begin{array}{ll}\text { Pumps } & 7.3\end{array}$
Impact of Jet 7.4
Answers 7.5
Explanations 7.5
Unit VII Heat-Transfer

1. Conduction $1.1-1.16$

Basic Introduction 1.1
Fourier's Law 1.1
Thermal Resistance 1.3
Critical Radius of Insulation 1.4
Heat Generation 1.5
Answers 1.7
Explanations 1.8
2. Free and Forced Convection 2.1-2.7

Free Convection 2.1
Forced Convection 2.1
Boundary Layer Analogies 2.2
Answers 2.3
Explanations 2.4
(vi)
3. Heat Transfer in Flow Over Plates and Pipes 3.1 - 3.6

Flow Over Plates and Pipes with Prandtl
Numbers 3.1
Answers 3.3
Explanations 3.4
4. Radiation $4.1-4.10$

Basic Definitions and Law Associated with
Radiation 4.1
Net Heat Radiation and Emissivity 4.1
Shape Factor 4.3
Radiation Shields 4.4
Answers 4.5
Explanations 4.5
5. Heat Exchanger 5.1-5.8

Types of Heat Exchanger 5.1
Heat Transfer Coefficient 5.1
LMTD Method 5.2
NTU Method 5.3
Answers 5.3
Explanations 5.4
6. Fins and Unsteady Heat Transfer
(Conduction and Convection) 6.1-6.6
Fins 6.1
Unsteady Heat Transfer 6.1
Answers 6.3
Explanations 6.3

Unit VIII Thermodynamics, Power Plant Engineering and Internal Combustion Engines

1. Thermodynamic System and Processes
Thermodynamic System 1.1
Processes and Cycle 1.1

State and Properties 1.2
Answers 1.2
Explanations 1.3
2. First Law of Thermodynamics, Heat, Work and Energy Interactions $2.1-2.13$
Heat, Work and Energy Interactions 2.1
First Law of Thermodynamics 2.1
Steady Flow System 2.4
Answers 2.6
Explanations 2.7
3. Second Law of Thermodynamics, Carnot Cycle and Entropy 3.1 - 3.10
Second Law of Thermodynamics 3.1
Carnot Cycle 3.2
Entropy 3.2
Answers 3.4
Explanations 3.5
4. Availability and Irreversibility 4.1-4.2
Availability 4.1
Irreversibility 4.1
Answers
4.1
Explanations 4.2
5. Properties of Pure Substances 5.1 - 5.6
Pure Substances 5.1
Properties of Gas Mixture and Ideal Gas
Equation of State 5.2
Answers 5.4
Explanations 5.4
6. Power Plant Engineering 6.1-6.20
Steam Flow Through Nozzle 6.1
Rankine and Brayton Cycles 6.2
Steam Turbine 6.7
Air Compressors 6.8
Answers 6.9
Explanations 6.10
7. Internal Combustion Engine 7.1 - 7.8
Air Standard Cycles 7.1
Combustion in SI and Cl 7.3
Performance Parameter Analysis 7.3
Answers 7.4
Explanations 7.4

Unit IX Refrigeration and Air-conditioning

1. Vapour Refrigeration 1.1 - 1.6

Vapour Compression Cycles 1.1
Refrigerants 1.3
Answers 1.3
Explanations 1.4
2. Psychrometric Process $2.1-2.4$

Psychrometric Processes and Application

Answers 2.2

Explanations 2.3
3. Heat Pumps and Cycles
3.1-3.4

Heat Pump
3.1

Refrigeration Cycles 3.2
Answers 3.2
Explanations 3.3
4. Properties of Moist Air 4.1 - 4.5

Properties of Moist Air and Airconditioning

Answers 4.2
Explanations 4.3

Unit X Materials Science and Manufacturing Engineering

1. Engineering Materials $1.1-1.8$

Heat Treatment 1.1
Iron-Carbon Diagram 1.2
Mechanical Properties 1.3
Crystal Structure 1.4
Answers 1.5
Explanations 1.5
2. Metal Casting 2.1-2.9

Gating System 2.1
Casting Method 2.3
Casting Defect 2.5
Answers 2.5
Explanations 2.6
3. Metal Forming $3.1-3.10$

Rolling 3.1
Forging 3.2
Extrusion and Wire Drawing 3.4
Answers 3.5
Explanations 3.6
4. Sheet Metal Operations 4.1 - 4.4

Shearing, Spinning and Stretch Forming 4.1
Drawing and Bending 4.2
Answers 4.2
Explanations 4.3
5. Joining/Welding $5.1-5.10$

Oxyacetylene Gas Welding 5.1
Arc Welding 5.1
Resistance Welding 5.2
Solid and Advanced Welding, Brazing and
Soldering 5.4
Answers 5.5
Explanations 5.5
6. Machining and Machine Tool Operation
6.1-6.24

Mechanism of Metal Cutting 6.1
Cutting Tool Geometry and Tool Life 6.2
Machining Process 6.6
Finishing Process 6.8
Answers 6.10
Explanations 6.11
7. Metrology and Inspection 7.1 - 7.12

Limit, Tolerance and Fits and Gauge Design

Linear and Angular Measurement 7.5
Answers 7.7
Explanations 7.8
8. CIMS
8.1-8.8

CAD and CAM
8.1

Numerical Control 8.2
Group Technology 8.4
Answers 8.5
Explanations 8.6
9. Nonconventional Machining (EDM, High

Energy Rate Forming) 9.1 - 9.8
Nonconventional Machining (ECM, EDM,
ASM, USM) 9.1
High Energy rate forming 9.4
Answers 9.5
Explanations 9.6

Unit XI Industrial Engineering

1. Forecasting

Forecasting
Answers
Explanations
2. Inventory Control

Basics of Inventory 2.1
EOQ Model
Answers
Explanations
$2.1-2.10$
2.1
1.1-1.4
1.1
1.3
1.3
2.5 2.5

Unit XII General Aptitude

1. Verbal Ability
1.1 - 1.16

Answers 1.12

Explanations 1.12
2. Numerical Ability $2.1-2.38$

Answers 220
Explanations 2.20

Fluid Kinematics

Fluid Velocity

1. The velocity components in the x and y directions of a two dimensional potential flow are u and v, respectively. Then $\frac{\partial u}{\partial x}$, is equal to
(a) $\frac{\partial v}{\partial x}$
(b) $-\frac{\partial v}{\partial x}$
(c) $\frac{\partial v}{\partial y}$
(d) $-\frac{\partial v}{\partial y}$
[2005: 1 Mark]
2. A leaf is caught in a whirlpool. At a given instant, the leaf is at a distance of 120 m from the centre of the whirlpool. The whirlpool can be described by the following velocity distribution: $\quad \mathrm{V}_{\mathrm{r}}=-\left(\frac{60 \times 10^{3}}{2 \pi \mathrm{r}}\right) \mathrm{m} / \mathrm{s} \quad$ and $V_{\theta}=\frac{300 \times 10^{3}}{2 \pi r} \mathrm{~m} / \mathrm{s}$, where r (in meters) is the distance from the centre of the whirlpool. What will be the distance of the leaf from the centre when it has moved through half a revolution?
(a) 48 m
(b) 64 m
(c) 120 m
(d) 142 m
[2005:2 Marks]
3. In a steady flow through a nozzle, the flow velocity on the nozzle axis is given by $\mathrm{v}=\mathrm{u}_{0}(1+3 \mathrm{x} / \mathrm{L}) \mathrm{i}$, where x is the distance along the axis of the nozzle from its inlet plane and L is the length of the nozzle. The time required for a fluid particle on the axis to travel from the inlet to the exit plane of the nozzle is
(a) $\frac{\mathrm{L}}{\mathrm{u}_{0}}$
(b) $\frac{\mathrm{L}}{3 \mathrm{u}_{0}} \ln 4$
(c) $\frac{\mathrm{L}}{4 \mathrm{u}_{0}}$
(d) $\frac{\mathrm{L}}{2.5 \mathrm{u}_{0}}$
[2007: 1 Mark]

Linked Answer Questions 4 and 5:

The gap between a moving circular plate and a stationary surface is being continuously reduced, as the circular plate comes down at a uniform speed V towards the stationary bottom surface, as shown in the figure. In the process, the fluid contained between the two plates flows out radially. The fluid is assumed to be incompressible and inviscid.

4. The radial velocity V_{r} at any radius r , when the gap width is h, is
(a) $\mathrm{V}_{\mathrm{r}}=\frac{\mathrm{Vr}}{2 \mathrm{~h}}$
(b) $\mathrm{V}_{\mathrm{r}}=\frac{2 \mathrm{Vr}}{\mathrm{h}}$
(c) $\mathrm{V}_{\mathrm{r}}=\frac{2 \mathrm{Vh}}{\mathrm{r}}$
(d) $\mathrm{V}_{\mathrm{r}}=\frac{\mathrm{Vh}}{\mathrm{r}}$
[2008:2 Marks]
5. The radial component of the fluid acceleration at $r=R$ is
(a) $\frac{3 V^{2} R}{4 h^{2}}$
(b) $\frac{\mathrm{V}^{2} \mathrm{R}}{4 \mathrm{~h}^{2}}$
(c) $\frac{\mathrm{V}^{2} R}{2 \mathrm{~h}^{2}}$
(d) $\frac{\mathrm{V}^{2} \mathrm{~h}}{2 \mathrm{R}^{2}}$ [2008:2 Marks]
6. A flat plate of width $\mathrm{L}=1 \mathrm{~m}$ is pushed down with a velocity $\mathrm{U}=0.01 \mathrm{~m} / \mathrm{s}$ towards a wall resulting in the drainage of the fluid between the plate and the wall as shown in the figure. Assume two- dimensional incompressible flow and that the plate remains parallel to the wall. The average velocity, $\mathrm{u}_{\text {avg }}$ of the fluid (in m / s) draining out at the instant shown in the figure is \qquad (correct to three decimal places).

[2018: 1 Mark, Set-1]
7. The velocity field of an incompressible flow in a Cartesian system is represented by

$$
\overrightarrow{\mathrm{V}}=2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \hat{\mathrm{i}}+\mathrm{v} \hat{\mathrm{j}}+3 \hat{\mathrm{k}}
$$

Which one of the following expressions for v is valid?
(a) $-4 x z+6 x y$
(b) $-4 x y-4 x z$
(c) $4 x z-6 x y$
(d) $4 x y+4 x z$
[2020:1 Mark, Set-1]
8. A two dimensional flow has velocities in x and y directions given by $u=2 x y t$ and $v=-y^{2} t$, where t denotes time. The equation for streamline passing through $x=1, y=1$ is
(a) $x^{2} y=1$
(b) $x y^{2}=1$
(c) $x^{2} y^{2}=1$
(d) $x / y^{2}=1$
[2021: 1 Mark, Set-2]
9. The velocity field in a fluid is given to be $\overrightarrow{\mathrm{V}}=(4 \mathrm{xy}) \hat{\mathrm{i}}+2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \hat{\mathrm{j}}$. Which of the following statement(s) is/are correct?
(a) The velocity field is one-dimensional.
(b) The flow is incompressible.
(c) The flow is irrotational.
(d) The acceleration experienced by a fluid particle is zero at $(\mathrm{x}=0, \mathrm{y}=0)$.
[2022 : 1 Mark, Set-2]
10. The velocity field of a certain two-dimensional flow is given by

$$
\mathrm{V}(\mathrm{x}, \mathrm{y})=\mathrm{k}(\mathrm{x} \hat{\mathrm{i}}-\mathrm{y} \hat{\mathrm{j}})
$$

where $\mathrm{k}=2 \mathrm{~s}^{-1}$. The coordinates x and y are in meters. Assume gravitational effects to be negligible.
If the density of the fluid is $1000 \mathrm{~kg} / \mathrm{m} 3$ and the pressure at the origin is 100 kPa , the pressure at the location ($2 \mathrm{~m}, 2 \mathrm{~m}$) is \qquad kPa .
(Answer in integer)
[2023 : 2 Marks]
11. Consider a unidirectional fluid flow with the velocity field given by
$\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})=\mathrm{U}(\mathrm{x}, \mathrm{t}) \hat{\mathrm{i}}$
where $u(0, t)=1$.
If the spatially homogeneous density field varies with time t as $\rho(\mathrm{t})=1+0.2 \mathrm{e}^{-\mathrm{t}}$
the value of $u(2,1)$ is. (Rounded off to two decimal places)
Assume all quantities to be dimensionless.
[2023:2 Marks]

Fluid Acceleration

12. In a two-dimensional velocity field with velocities u and v along the x and y directions respectively, the convective acceleration along the x-direction is given by
(a) $u \frac{\partial V}{\partial x}+v \frac{\partial u}{\partial y}$
(b) $u \frac{\partial u}{\partial x}+v \frac{\partial v}{\partial y}$
(c) $u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}$
(d) $u \frac{\partial u}{\partial x}+u \frac{\partial u}{\partial y}$
[2006: 1 Mark]
13. A flow field which has only convective acceleration is
(a) a steady uniform flow
(b) an unsteady uniform flow
(c) a steady non-uniform flow
(d) an unsteady non-uniform flow
[2014 : 1 Mark, Set-4]
14. Consider the two-dimensional velocity field given by $\overline{\mathrm{V}}=\left(5+\mathrm{a}_{1} \mathrm{x}++\mathrm{b}_{1} \mathrm{y}\right) \hat{\mathrm{i}}+\left(4+\mathrm{a}_{2} \mathrm{x}+\right.$ $\left.b_{2} y\right) \hat{j}$, where a_{1}, b_{1}, a_{2} and b_{2} are constants. Which one of the following conditions needs to be satisfied for the flow to be incompressible?
(a) $a_{1}+b_{1}=0$
(b) $a_{1}+b_{2}=0$
(c) $\mathrm{a}_{2}+\mathrm{b}_{2}=0$
(d) $\mathrm{a}_{2}+\mathrm{b}_{1}=0$
[2017: 1 Mark, Set-1]
15. Water flows though a pipewith a velocity given by $\vec{V}=\left(\frac{4}{t}+x+y\right) \hat{j} \mathrm{~m} / \mathrm{s}$, where \hat{j} is the unit vector in the y direction, $t(>0)$ is in seconds, and x and y are in meters. The magnitude of total acceleration at the point $(x, y)=(1,1)$ at t $=2 \mathrm{~s}$ is \qquad $\mathrm{m} / \mathrm{s}^{2}$.
[2019: 1 Mark, Set-1]
16. For a two-dimensional, incompressible flow having velocity components u and v in the x and y directions, respectively, the expression

$$
\frac{\partial\left(u^{2}\right)}{\partial x}+\frac{\partial(u v)}{\partial y}
$$

can be simplified to
(a) $u \frac{\partial u}{\partial x}+u \frac{\partial v}{\partial y}$
(b) $2 u \frac{\partial u}{\partial x}+u \frac{\partial v}{\partial y}$
(c) $2 u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}$
(d) $u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}$
[2021: 1 Mark, Set-2]
17. A steady two-dimensional flow field is specified by the stream function

$$
\Psi=\mathrm{kx}^{3} \mathrm{y},
$$

where x and y are in meter and the constant $\mathrm{k}=1 \mathrm{~m}^{-2} \mathrm{~s}^{-1}$. The magnitude of acceleration at a point $(x, y)=(1 \mathrm{~m}, 1 \mathrm{~m})$ is \qquad $\mathrm{m} / \mathrm{s}^{2}$ (round off to 2 decimal places).
[2022: 2 Marks, Set-1]
18. The figure shows two fluids held by a hinged gate. The atmospheric pressure is $\mathrm{Pa}=100 \mathrm{kPa}$. The moment per unit width about the base of the hinge is \qquad $\mathrm{kNm} / \mathrm{m}$. (Rounded off to one decimal place)
Take the acceleration due to gravity to be $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.

[2023: 2 Marks]

Types of Fluid Flow

19. The 2-D flow with, velocity $\vec{V}=(x+2 y+2) \hat{i}+(4-y) \hat{j}$ is
(a) Compressible and irrotational
(b) Compressible and not irrotational
(c) Incompressible and irrotational
(d) Incompressible and not irrotational
[2001 : 2 Marks]
20. Which combination of the following statements about steady incompressible forced vortex flow is correct?
P: Shear stress is zero at all points in the flow.
Q : Vorticity is zero at all points in the flow.
R : Velocity is directly proportional to the radius from the centre of the vortex.

S : Total mechanical energy per unit mass is constant in the entire flow field. Select the correct answer using the codes given below:
(a) P and Q
(b) R and S
(c) P and R
(d) P and S
[2007:2 Marks]
21. For the continuity equation given by $\vec{\Delta}$. $\vec{V}=0$ to be valid, where $\overrightarrow{\mathrm{V}}$ is the velocity vector, which one of the following is a necessary condition?
(a) Steady flow
(b) Irrotational flow
(c) Inviscid flow
(d) Incompressible flow
[2008: 1 Mark]
22. For an incompressible flow field, V, which one of the following conditions must be satisfied?
(a) $\nabla \cdot \vec{V}=0$
(b) $\nabla \asymp \overrightarrow{\mathrm{V}}=0$
(c) $(\overrightarrow{\mathrm{V}} \cdot \nabla) \overrightarrow{\mathrm{V}}=0$
(d) $\frac{\partial \overrightarrow{\mathrm{V}}}{\partial \mathrm{t}}+(\overrightarrow{\mathrm{V}} \cdot \nabla) \overrightarrow{\mathrm{V}}=0 \quad$ [2014: 1 Mark, Set-2]
23. Match the following pairs:

Equation
 Physical Interpretation

P. $\nabla \times \overrightarrow{\mathrm{V}}=0$
I. Incompressible continuity equation
Q. $\nabla \cdot \overrightarrow{\mathrm{V}}=0$
II. Steady flow
R. $\frac{\Delta \vec{V}}{\Delta t}=0$
III. Irrotational flow
S. $\frac{\partial \overrightarrow{\mathrm{V}}}{\partial \mathrm{t}}=0 \quad$ IV. Zero acceleration of fluid particle
(a) P-IV, Q-I, R-II, S-III
(b) P-IV, Q-III, R-I, S-II
(c) P-III, Q-I, R-IV, S-II
(d) P-III, Q-I, R-II, S-IV
[2015: 2 Marks, Set-1]
24. For a two-dimensional incompressible flow field given by $\overrightarrow{\mathrm{u}}=\mathrm{A}(\mathrm{x} \hat{\mathrm{i}}-\mathrm{y} \hat{\mathrm{j}})$, where $\mathrm{A}>0$, which one of the following statements is FALSE?
A. It satisfies continuity equation
B. It is unidirectional when $\mathrm{x} \rightarrow 0$ and $\mathrm{y} \rightarrow \infty$.
C. Its streamlines are given by $\mathrm{x}=\mathrm{y}$.
D. It is irrotational
(a) A
(b) B
(c) C
(d) D
[2018: 1 Mark, Set-1]
25. In a Lagrangian system, the position of a fluid particle in a flow is described as $\mathrm{x}=\mathrm{x}_{0} \mathrm{e}^{-\mathrm{kt}}$ and y $=\mathrm{y}_{0} \mathrm{e}^{\mathrm{kt}}$ where t is the time while $\mathrm{x}_{0}, \mathrm{y}_{0}$, and k are constants. The flow is
(a) unsteady and one-dimensional
(b) steady and two-dimensional
(c) steady and one-dimensional
(d) unsteady and two-dimensional
[2018: 2 Marks, Set-1]
26. The velocity field of a two dimensional incompressible flow is given by $\vec{V}=2 \sin h x \hat{i}+v(x, y) \hat{j}$, where \hat{i} and \hat{j} denote the unit vectors in x and y direction, respectively. If $v(x, 0)=\cosh x$, then $v(0,-1)$ is
(a) 1
(b) 2
(c) 3
(d) 4
[2024 : 1 Mark]

Fluid Flow Lines and Application

27. A fluid flow is represented by the velocity field $\overrightarrow{\mathrm{V}}=\mathrm{ax} \hat{\mathrm{i}}+\mathrm{ay} \hat{\mathrm{j}}$, where a is a constant. The equation of stream line passing through a point $(1,2)$ is
(a) $x-2 y=0$
(b) $2 \mathrm{x}+\mathrm{y}=0$
(c) $2 x-y=0$
(d) $x+2 y=0$
[2004 : 1 Mark]
28. A two-dimensional flow field has velocities along the x and y directions given by $\mathrm{u}=\mathrm{x}^{2} \mathrm{t}$ and $\mathrm{v}=-$ $2 x y t$ respectively, where t is time. The equation of streamline is
(a) $x^{2} y=$ constant
(b) $x y^{2}=$ constant
(c) $x y=$ constant
(d) not possible to determine 2006:2 Marks]
29. Velocity vector of a flow field is given as $\overrightarrow{\mathrm{V}}=2 x y \hat{i}-x^{2} \mathrm{zj}$. The vorticity vector at $(1,1,1)$ is
(a) $4 \hat{i}-\hat{j}$
(b) $4 \hat{\mathrm{i}}-\hat{\mathrm{k}}$
(c) $\hat{\mathrm{i}}-4 \hat{\mathrm{j}}$
(d) $\hat{\mathrm{i}}-4 \hat{\mathrm{k}}$
[2010:2 Marks]
30. A streamline and an equipotential line in a flow field
(a) are parallel to each other
(b) are perpendicular to each other
(c) intersect at an acute angle
(d) are identical
31. Consider the following statements regarding streamline(s):
(i) It is a continuous line such that the tangent at any point on it shows the velocity vector at that point
(ii) There is no flow across streamlines
(iii) $\frac{d x}{u}=\frac{d y}{v}=\frac{d z}{w}$ is the differential equation of a streamline, where u, v and w are velocities in directions x, y and z, respectively
(iv) In an unsteady flow, the path of a particle is a streamline
Which one of the following combinations of the statements is true?
(a) (i), (ii), (iv)
(b) (ii), (iii), (iv)
(c) (i), (iii), (iv)
(d) (i), (ii), (iii)
[2014: 2 Marks, Set-4]
32. Consider a velocity field $\widehat{\mathrm{V}}=\mathrm{K}(y \hat{\mathrm{i}}+\mathrm{x} \hat{\mathbf{k}})$, where K is a constant. The vorticity, Ω_{Z}, is
(a) -K
(b) K
(c) $-\mathrm{K} / 2$
(d) $\mathrm{K} / 2$
[2014: 2 Marks, Set-4]
33. If the fluid velocity for a potential flow is given by $V(x, y)=u(x, y) i+v(x, y) j$ with usual notations, then the slope of the potential line at (x, y) is
(a) $\frac{v}{u}$
(b) $-\frac{u^{2}}{v}$
(c) $-\frac{v}{u^{2}}$
(d) $\frac{u}{v}$
[2015 : 1 Mark, Set-2]
34. The velocity field of an incompressible flow is given by
$V=\left(a_{1} x+a_{2} y+a_{3} z\right) i+\left(b_{1} x+b_{2} y+b_{3} z\right) j+\left(c_{1} x+\right.$ $\left.c_{2} y+c_{3} z\right) k$, where $a_{1}=2$ and $c_{3}=-4$. The value of b_{2} is \qquad -.
[2015: 2 Marks, Set-1]
35. The volumetric flow rate (per unit depth) between two streamlines having stream function ψ_{1} and ψ_{2} is
(a) $\left|\psi_{1}+\psi_{2}\right|$
(b) $\psi_{1} \psi_{1}$
(c) ψ_{1} / ψ_{2}
(d) $\left|\psi_{1}-\psi_{2}\right|$
[2016 : 1 Mark, Set-2]
36. For a certain two-dimensional incompressible flow, velocity field is given by $2 x y \hat{i}-y^{2} \hat{j}$. The streamlines for this flow are given by the family of curves
(a) $x^{2} y^{2}=$ constant
(b) $x y^{2}=$ constant
(c) $2 x y-y^{2}=$ constant
(d) xy-constant
[2016: 1 Mark, Set-3]
37. For a two-dimensional flow, the velocity field is $\overrightarrow{\mathrm{u}}=\frac{\mathrm{x}}{\mathrm{x}^{2}+\mathrm{y}^{2}} \hat{\mathrm{i}}+\frac{\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}} \hat{\mathrm{j}}$ where $\hat{\mathrm{i}}$ and $\hat{\mathrm{j}}$ are the basis vectors in the $\mathrm{x}-\mathrm{y}$ Cartesian coordinate system. Identify the CORRECT statements from below.
38. The flow is incompressible
39. The flow is unsteady
40. y-component of acceleration,

$$
\mathrm{a}_{\mathrm{y}}=\frac{-\mathrm{y}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{2}}
$$

4. x-component of acceleration,

$$
a_{x}=\frac{-(x+y)}{\left(x^{2}+y^{2}\right)^{2}}
$$

(a) 2 and 3
(b) 1 and 3
(c) 1 and 2
(d) 3 and 4
[2016: 2 Marks, Set-3]
38. For a steady flow, the velocity field is $\overline{\mathrm{V}}=\left(-\mathrm{x}^{2}+3 y\right) \hat{\mathrm{i}}+(2 x y) \hat{\mathrm{j}}$. The magnitude of the acceleration of a particle at $(1,-1)$ is
(a) 2
(b) 1
(c) $2 \sqrt{5}$
(d) 0
[2017: 2 Marks, Set-1]
39. A two-dimensional incompressiblefrictionless flow field is given by $\vec{\mu}=x \hat{i}-y \hat{j}$. If ρ is the density of thefluid, theexpression for pressure gradient vector at any point in the flow field is given as
(a) $\rho(x \hat{i}-y \hat{j})$
(b) $\rho(x \hat{i}+y \hat{j})$
(c) $-\rho\left(x^{2} \hat{i}+y^{2} \hat{j}\right)$
(d) $-\rho(x \hat{i}+y \hat{j})$
[2019: 1 Mark, Set-2]

ANSWERS

1. (d)	2. (b)	3. (b)	4. (a)	5. (a)	6. (0.05)	7. (b)	8. (b)	9. (b, c, d) 10. (84)	
11. (1.137)12. (c)	13. (c)	14. (b)	15. (*)	16. (d)	17. (4.20 to 4.28$)$	18. (57.225)			
19. (d)	20. (b)	21. (d)	22. (a)	23. (c)	24. (c)	25. (b)	26. (c)	27. (c)	28. (a)
29. (d)	30. (b)	31. (d)	32. (a)	33. (b)	34. (2)	35. (d)	36. (b)	37. (b)	38. (c)
39. (d)									

[^0]
EXPLLANATIONS

1. $\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}=0 \ldots$ (i) (Laplace Equation should be satisfied)
$\therefore u=-\frac{\partial \phi}{\partial x} \quad$ and $\quad v=-\frac{\partial \phi}{\partial y}$
$\Rightarrow \frac{\partial u}{\partial x}=-\frac{\partial^{2} \phi}{\partial x^{2}}$, and $\frac{\partial v}{\partial y}=-\frac{\partial^{2} \phi}{\partial y^{2}}$
Putting values in equation (i), we get
$\left(-\frac{\partial u}{\partial x}\right)+\left(-\frac{\partial v}{\partial y}\right)=0$
$\Rightarrow \frac{\partial u}{\partial x}=-\frac{\partial v}{\partial y}$
2. Radial distance $=120 \mathrm{~m}$
$\mathrm{V}_{\mathrm{r}}=\frac{-60 \times 10^{3}}{2 \pi \mathrm{r}} \mathrm{m} / \mathrm{s}$
$\& V_{\theta}=\frac{300 \times 10^{3}}{2 \pi r} \mathrm{~m} / \mathrm{s}$
$\& \theta=\pi$
$\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{V}_{\theta}}=\frac{-1}{5}$
we know that
$\mathrm{V}_{\mathrm{r}}=\frac{\mathrm{dr}}{\mathrm{dt}}$
$\& V_{\theta}=r w=r \frac{d \theta}{d t}-5 V_{r}=r \frac{d \theta}{d t}$
$\mathrm{V}_{\mathrm{r}}=\frac{-\mathrm{r}}{5} \frac{\mathrm{~d} \theta}{\mathrm{dt}} \ldots$ (ii)
By equating (i) \& (ii), we get
$\frac{\mathrm{dr}}{\mathrm{dt}}=\frac{-\mathrm{r}}{5} \frac{\mathrm{~d} \theta}{\mathrm{dt}}$
Integrating both sides, we get
$\int_{120}^{\mathrm{r}} \frac{\mathrm{dr}}{\mathrm{r}}=\frac{-1}{5}[\theta]_{0}^{\pi}$
$\ln \mathrm{r}]_{120}^{r}=\frac{-1}{5} \times \pi$
$\ln \left(\frac{\mathrm{r}}{120}\right)=\frac{-\pi}{5}$
By solving above, we get $\mathrm{r}=64 \mathrm{~m}$
3.

$v=u_{0}\left(1+\frac{3 x}{\mathrm{~L}}\right)$
$\therefore \frac{d x}{d t}=u_{0}\left(1+\frac{3 x}{\mathrm{~L}}\right)$
$\Rightarrow \frac{d x}{u_{0}\left(1+\frac{3 x}{\mathrm{~L}}\right)}=\mathrm{dt}$
Integrating $\int_{0}^{\mathrm{L}} \frac{d x}{u_{0}\left(1+\frac{3 x}{\mathrm{~L}}\right)}=\int_{0}^{\mathrm{T}} d t$
$\Rightarrow \frac{\mathrm{L}}{3 u_{0}}\left[\ln \left(1+\frac{3 x}{\mathrm{~L}}\right)\right]_{0}^{\mathrm{L}}=\mathrm{T}$
$\Rightarrow \mathrm{T}=\frac{\mathrm{L}}{3 u_{0}} \ln (4)=\frac{\mathrm{L}}{3 u_{0}} \ln (4)$
4. $\mathrm{V} \times \pi \mathrm{r}^{2}=\mathrm{V}_{\mathrm{r}} \times 2 \pi \mathrm{rh}$
$\mathrm{V}_{\mathrm{r}}=\frac{\mathrm{v} \cdot \mathrm{r}}{2 \mathrm{~h}}$
5. Radial acceleration
$\mathrm{a}_{\mathrm{r}}=\mathrm{V}_{\mathrm{r}} \times \frac{\partial \mathrm{Vr}}{\partial \mathrm{r}}+\frac{\partial \mathrm{V}_{\mathrm{r}}}{\partial \mathrm{t}}$
$\mathrm{a}_{\mathrm{r}}=\frac{\mathrm{V} . \mathrm{r}}{2 \mathrm{~h}} \times \frac{\partial}{\partial \mathrm{r}}\left(\frac{\mathrm{Vr}}{2 \mathrm{~h}}\right)+\frac{\partial}{\partial \mathrm{t}}\left(\frac{\mathrm{Vr}}{\partial \mathrm{t}}\right)$
$\frac{-\partial \mathrm{h}}{\partial \mathrm{t}}=\mathrm{V}$
$\therefore \mathrm{a}_{\mathrm{r}}=\frac{\mathrm{Vr}}{2 \mathrm{~h}} \times \frac{\mathrm{Vr}}{2 \mathrm{~h}}+\frac{\mathrm{Vr}}{2} \times\left(\frac{-1}{\mathrm{~h}^{2}} \frac{\partial \mathrm{~h}}{\partial \mathrm{t}}\right)$
$\therefore \mathrm{a}_{\mathrm{r}}=\frac{\mathrm{V}^{2} \mathrm{r}}{4 \mathrm{~h}^{2}}+\frac{2 \mathrm{~V}^{2} \mathrm{r}}{4 \mathrm{~h}^{2}}$
$\mathrm{a}_{\mathrm{r}}=\frac{3 \mathrm{~V}^{2} \mathrm{r}}{4 \mathrm{~h}^{2}}$
6.

By mass conservation:-

$$
\begin{array}{r}
2\left(\mathrm{~s} \times \mathrm{u}_{\mathrm{avg}} \times \mathrm{db}\right)=(\mathrm{s} . \mathrm{u} \times \mathrm{Lb}) \\
\Rightarrow 2 \times \mathrm{v}_{\mathrm{avg}} \times 0.1=0.01 \times 1 \\
u_{\mathrm{avg}}=0.05 \mathrm{~m} / \mathrm{s}
\end{array}
$$

7. Given : $\vec{V}=2\left(x^{2}-y^{2}\right) \hat{i}+v \hat{j}+3 \hat{k}$

$$
=u \hat{i}+v \hat{j}+w \hat{k}
$$

For incompressible flow,

$$
\begin{gathered}
\Delta \cdot \overrightarrow{\mathrm{V}}=0 \\
\frac{\partial}{\partial \mathrm{x}}(\mathrm{u})+\frac{\partial}{\partial \mathrm{y}}(\mathrm{v})+\frac{\partial}{\partial \mathrm{z}}(\mathrm{w})=0 \\
\Rightarrow \frac{\partial}{\partial \mathrm{x}}\left[2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)\right]+\frac{\partial}{\partial \mathrm{y}}(\mathrm{v})+\frac{\partial}{\partial \mathrm{z}}(3)=0 \\
\Rightarrow 4 \mathrm{x}+\frac{\partial \mathrm{v}}{\partial \mathrm{y}}+0=0 \\
\Rightarrow \frac{\partial \mathrm{v}}{\partial \mathrm{y}}=-4 \mathrm{x} \\
\Rightarrow \mathrm{v}=\int-4 \mathrm{x} \text { dy + cons tant } \\
\Rightarrow \mathrm{v}=-4 \mathrm{xy}+\mathrm{constant}
\end{gathered}
$$

8. $u=2 x y t, \quad v=-y^{2} t$

Equation for steam line is
$\frac{d x}{u}=\frac{d y}{v}$
$\frac{d x}{2 x y t}=\frac{d y}{-y^{2} t}$
$\frac{d x}{2 x y}=\frac{-d y}{y^{2}} \Rightarrow \frac{d x}{2 x}=\frac{-d y}{y}$
Integrating on both sides
$\frac{1}{2} \log x=-\log y+c$
at $\mathrm{x}=1, \mathrm{y}=1$
$\frac{1}{2}(\log 1)=-\log (1)+c$
$\mathrm{c}=0$
\therefore equation of stream line is
$\frac{1}{2} \log \mathrm{x}=-\log \mathrm{y}$
$\log ^{\sqrt{x}}=-\log y \Rightarrow \log ^{\sqrt{x}}+\log y=0$
$\sqrt{x y}=1$
$x y^{2}=1$
Hence, option (b) is correct answer.
9. As given that:
$\nabla=(4 x y) \hat{i}+2\left(x^{2}-y^{2}\right) \hat{j}$
$\mathrm{U}=4 \mathrm{xy}, \mathrm{V}=2\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)$
(i) For incompressible flow,

$$
\vec{\nabla} \cdot \overrightarrow{\mathrm{V}}=0
$$

or, $\quad \nabla \cdot \overrightarrow{\mathrm{V}}=\frac{\partial \mathrm{U}}{\partial \mathrm{x}}+\frac{\partial \mathrm{V}}{\partial \mathrm{y}}=4 \mathrm{y}-4 \mathrm{y}=0$
So, fluid is incompressible.
(ii) For irrotational flow,

$$
\omega_{z}=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)=\frac{1}{2}(4 x-4 x)=0
$$

$$
\left(\therefore \omega_{\mathrm{z}}=0\right)
$$

So, fluid is irrotational.
(iii)Acceleration at $\mathrm{x}=0, \mathrm{y}=0$

$$
\begin{aligned}
& a_{x}=\frac{\Delta u}{\Delta t}=\left[u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right]_{(x=0, y=0)}=0 \\
& a_{y}=\frac{\Delta v}{\Delta t}=\left[u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right]_{(x=0, y=0)}=0
\end{aligned}
$$

So, acceleration of fluid at $\mathrm{x}=0, \mathrm{y}=0$ is zero.
Hence, it is a 2-D flow.
10. As given that,

$$
\begin{aligned}
\mathrm{v}(\mathrm{x}, \mathrm{y}) & =\mathrm{k}(\mathrm{x} \hat{\mathrm{i}}-\mathrm{yj}) \\
\rho & =1000 \mathrm{~kg} / \mathrm{m}^{3} \\
\mathrm{P}_{1} & =100 \mathrm{kPa}
\end{aligned}
$$

At origin (0, 0)

$$
\begin{aligned}
\mathrm{V} & =\mathrm{k}(\mathrm{x} \hat{\mathrm{i}}-\mathrm{y} \hat{\mathrm{j}}) \\
\mathrm{V}_{1} & =\left|\mathrm{V}_{1}\right|=|2(0-0)|=0
\end{aligned}
$$

At location (2, 2)

$$
\begin{aligned}
\mathrm{V}_{2} & =2(2 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}) \\
\mathrm{V}_{2} & =(4 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}) \\
\left|\mathrm{V}_{2}\right| & =\sqrt{4^{2}+4^{2}}=\sqrt{32}
\end{aligned}
$$

Now from Bernoulli's equation;

$$
P_{1}+\frac{1}{2} \rho V_{1}^{2}=P_{2}+\frac{1}{2} \rho V_{2}^{2}
$$

By putting all values;
$100 \mathrm{kPa}+\frac{1}{2} \times 1000 \times 0=\mathrm{P}_{2}+\frac{1}{2} \times 1000 \times(\sqrt{32})^{2}$
So, $\quad P_{2}+16000=100 \times 10^{3}$

$$
\begin{aligned}
\mathrm{P}_{2} & =100000-16000 \\
& =84,000 \mathrm{pa} \\
\mathrm{P}_{2} & =84 \mathrm{kPa}
\end{aligned}
$$

3.8 Fluid Kinematics

11. As given that:

$$
\begin{aligned}
\mathrm{u}(0, \mathrm{t}) & =1 \\
\rho(\mathrm{t}) & =1+0.2 \mathrm{e}^{-\mathrm{t}}
\end{aligned}
$$

As we know that,
Continuity equation for unsteady flow :

$$
\frac{\partial \rho}{\partial t}+\rho \frac{\partial u}{\partial x}+\rho \frac{\partial v}{\partial y}+\rho \frac{\partial w}{\partial z}=0
$$

Here, $V(t, x, y, z)=u(t, x) \hat{i}$
Thus, $V=0, w=0$

$$
\begin{align*}
& \frac{\partial \rho}{\partial \mathrm{t}}+\frac{\partial}{\partial \mathrm{x}}(\rho \mathrm{U})=0 \tag{i}\\
& \text { Where, } \begin{aligned}
\frac{\partial \rho}{\partial \mathrm{t}} & =\frac{\partial\left(1+0.2 \mathrm{e}^{-\mathrm{t}}\right)}{\partial \mathrm{t}}=-0.2 \mathrm{e}-\mathrm{t} \\
\frac{\partial}{\partial \mathrm{x}}(\rho \mathrm{u}) & =\frac{\partial}{\partial \mathrm{x}}\left(\left(1+0.2 \mathrm{e}^{-\mathrm{t}}\right) \mathrm{u}(\mathrm{x}, \mathrm{t})\right) \\
& =\left(1+0.2 \mathrm{e}^{-\mathrm{t}}\right) \frac{\partial \mathrm{u}}{\partial \mathrm{x}}
\end{aligned}
\end{align*}
$$

By putting the value of these expression in equation (i)

$$
\begin{aligned}
&-0.2 \mathrm{e}^{-\mathrm{t}}+\left(1+0.2 \mathrm{e}^{-\mathrm{t}}\right) \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=0 \\
&-0.2 \mathrm{e}^{-\mathrm{t}}+\left(1+0.2 \mathrm{e}^{-\mathrm{t}}\right) \cdot \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=0 \\
& \frac{\partial \mathrm{u}}{\partial \mathrm{x}}=\left[\frac{0.2 \mathrm{e}^{-\mathrm{t}}}{1+0.2 \mathrm{e}^{-\mathrm{t}}}\right] \\
& \mathrm{u}=\left(\frac{0.2 \mathrm{e}^{-\mathrm{t}}}{1+0.2 \mathrm{e}^{-\mathrm{t}}}\right) \mathrm{x}+\mathrm{c}
\end{aligned}
$$

Using boundary condition,
Since, $u(0, t)=1$

$$
\mathrm{c}=1
$$

So, $\quad u=\left[\frac{0.2 \mathrm{e}^{-\mathrm{t}}}{1+0.2 \mathrm{e}^{-\mathrm{t}}}\right] \mathrm{x}+1$
And, the value of $u(2,1)=\left[\frac{0.2 \mathrm{e}^{-1}}{1+0.2 \mathrm{e}^{-1}}\right] 2+1$

$$
\begin{aligned}
u(2,1) & =1.1371 \mathrm{~m} / \mathrm{s} \\
\mathrm{u} & =1.14 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

12. Two dimensional velocity field with velocities u, v and along x and y direction.
\therefore Acceleration along x direction, $a_{x}=a_{\text {convective }}+$
$\mathrm{a}_{\text {temporal or local }}$
$=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}+\frac{\partial u}{\partial t}$
Convective temporal acceleration acceleration

Sicne, $\frac{\partial u}{\partial z}=0$ for 2-dimensional field, therefore Convective acceleration
$=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}$
13. Convective acceleration is the effect of time independent acceleration of fluid with respect to space that means flow is steady non-uniform flow.
14. For continuous and incompressible flow

$$
\begin{aligned}
& u_{x}+u_{y}=0 \\
& a_{1}+b_{2}=0
\end{aligned}
$$

15. Given: $\bar{V}=\left(\frac{4}{t}+x+y\right) \hat{j} \frac{m}{s}$

$$
\begin{aligned}
\bar{v} & =u \hat{i}+\hat{v j}+w \hat{k} \\
u & =0, w=0 \\
v & =\left(\frac{4}{t}+x+y\right) \hat{j} \\
\vec{a} & =\vec{a}_{x} \hat{i}+\vec{a}_{y} \hat{j}+\vec{a}_{z} \hat{k} \\
\vec{a}_{x} & =u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+w \frac{\partial u}{\partial z}+\frac{\partial u}{\partial t}=0 \\
\vec{a}_{z} & =u \frac{\partial w}{\partial x}+v \frac{\partial w}{\partial y}+w \frac{\partial w}{\partial z}+\frac{\partial w}{\partial t}=0 \\
\vec{a}_{y} & =u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+w \frac{\partial v}{\partial z}+\frac{\partial v}{\partial t} \\
& =v \frac{\partial v}{\partial y}+\frac{\partial v}{\partial t} \\
& =\left(\frac{4}{t}+x+y\right) \times 1+\left(-\frac{4}{t^{2}}\right) \\
\Rightarrow \quad \vec{a}_{y} & =\left(\frac{4}{t}+x+y-\frac{4}{t^{2}}\right) \hat{j}
\end{aligned}
$$

Now, At $(x, y)=1,1$ and $t=2 \mathrm{sec}$.
Total acceleration is given by,

$$
\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{a}}_{\mathrm{y}}=\left(\frac{4}{2}+1+1-\frac{4}{4}\right)=3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

16. As we know that,

For a two-dimensional compressible flow, continuity equation is

$$
\begin{aligned}
& \frac{\partial u}{\partial^{2} x}+\frac{\partial v}{\partial y}=0 \\
& \Rightarrow \frac{\partial u}{\partial x}=\frac{-\partial v}{\partial y} \Rightarrow \frac{\partial v}{\partial y}=\frac{-\partial u}{\partial x}
\end{aligned}
$$

As given that,

$$
\begin{aligned}
& \frac{\partial\left(u^{2}\right)}{\partial x}+\frac{\partial(u v)}{\partial y}=2 u \frac{\partial u}{\partial x}+\left[\frac{\partial u}{\partial y}(v)+(u) \frac{\partial v}{\partial y}\right] \\
& =2 u \frac{\partial u}{\partial x}+(v)\left(\frac{\partial u}{\partial y}\right)+(u)\left(\frac{\partial v}{\partial y}\right) \\
& =2 u \frac{\partial u}{\partial x}+(V)\left(\frac{\partial u}{\partial y}\right)+(u)\left(\frac{-\partial u}{\partial x}\right) \\
& =(2 u-u)\left(\frac{\partial u}{\partial x}\right)+v \frac{\partial u}{\partial y}+u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}
\end{aligned}
$$

Hence option (d) is the correct answer.
17. As given, Stream function;
$\Psi=\mathrm{kx}^{3} \mathrm{y} ; \quad \therefore \mathrm{k}=1 \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
$\mathrm{u}=\frac{\partial \psi}{\partial \mathrm{y}} \Rightarrow \mathrm{u}=\mathrm{x}^{3}$
$v=\frac{-\partial \psi}{\partial x} \Rightarrow v=-3 x^{2} y$
$\overrightarrow{\mathrm{V}}=\mathrm{x}^{3} \hat{\mathrm{i}}-3 \mathrm{x}^{2} \hat{\mathrm{y}}$
$a_{x}=u \frac{\delta u}{\delta x}+U \frac{\delta u}{\delta y}$
$a_{x}=+x^{3}\left(+3 x^{2}\right) \Rightarrow a_{x}=3 x^{5}$
At (1, 1), $\mathrm{a}_{\mathrm{x}}=3 \mathrm{~m} / \mathrm{sec}^{2}$
$\mathrm{a}_{\mathrm{y}}=\left[\mathrm{u} \frac{\delta \mathrm{u}}{\delta \mathrm{x}}+\mathrm{v} \frac{\delta \mathrm{v}}{\delta \mathrm{y}}\right]$
$a_{y}=-x^{3}(6 x y)-3\left(x^{2} y\right)\left(-3 x^{2}\right)$
$=-6 x^{4} y+9 x^{4} y=3 x^{4} y$
$\vec{a}=3 x^{5} \hat{i}+3 x^{4} y \hat{j}$
At (1, 1)
$\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$
$\Rightarrow|\mathrm{a}|=\sqrt{3^{2}+3^{2}}$
$\Rightarrow|a|=3 \sqrt{2}=4.24 \mathrm{~m} / \mathrm{s}^{2}$
18. According to the question;

$$
\begin{aligned}
& \mathrm{P}_{1}=\frac{\left(10^{3} \times 9.81 \times 1\right)}{1000} \\
& \mathrm{P}_{1}=9.81 \mathrm{kPa}
\end{aligned}
$$

As we know that,

$$
\mathrm{P}_{2}=\mathrm{P}_{1}+\left(\rho_{2} \mathrm{gh}_{2}\right)
$$

$$
\begin{aligned}
& \mathrm{P}_{2}=\mathrm{P}_{1}+[2000 \times 9.81 \times 2] \\
& \mathrm{P}_{2}=49.05 \mathrm{kPa}
\end{aligned}
$$

And, $\quad \overline{\mathrm{X}}=\left[\frac{\mathrm{P}_{2}+2 \mathrm{P}_{1}}{\mathrm{P}_{1}+\mathrm{P}_{2}}\right] \times \frac{2}{3}$
By putting $\mathrm{P}_{1} \& \mathrm{P}_{2}$

$$
\overline{\mathrm{X}}=\frac{7}{9}
$$

So, the resultant forces F_{1} and F_{2} due to pressure P_{1} and P_{2} respectively are :
Force $\left(\mathrm{F}_{1}\right)=$ Volume of triangular pressure prism

$$
=\frac{1}{2} \times \mathrm{P}_{1} \times 1 \times 1=4.9 \mathrm{kN}
$$

Force $\left(\mathrm{F}_{2}\right)=$ Volume of trapezoidal pressure prism

$$
\begin{aligned}
& =\frac{1}{2} \times\left[\mathrm{P}_{1}+\mathrm{P}_{2}\right] \times 2 \times 1 \\
& =58.86 \mathrm{kN}
\end{aligned}
$$

Now, the moment due to forces

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{o}}=\mathrm{F}_{1} \times\left[2+\frac{1}{3}\right]+\mathrm{F}_{2} \cdot \overline{\mathrm{X}} \\
& \mathrm{M}_{\mathrm{o}}=\mathrm{F}_{1} \times\left[2+\frac{1}{3}\right]+\mathrm{F}_{2} \times \frac{7}{9}
\end{aligned}
$$

By putting the all values then, we get

$$
\begin{aligned}
& \mathrm{M}_{\mathrm{o}}=\left[\left(4.9 \times \frac{7}{3}\right)+\left(58.86 \times \frac{7}{9}\right)\right] \\
& \mathrm{M}_{\mathrm{o}}=57.225 \mathrm{kNm}
\end{aligned}
$$

19. $\bar{v}=(x+2 y+2) \hat{i}+(4-y) \hat{j}$
$u=x+2 y+2, v=4-y$
$\therefore \frac{\partial v}{\partial x}=1, \frac{\partial v}{\partial y}=-1$
$\therefore \frac{\partial v}{\partial x}+1, \frac{\partial v}{\partial y}=0$,
hence incompressible.
Again, $\omega=\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial v}{\partial y}\right)$
$=\frac{1}{2}(0-2)=-1$.
hence not irrotational.
20. Clearly zero shear stress and vortex.
21. The basic equation of continuity for fluid flow is given by

$$
\frac{\rho u}{u} \quad \frac{\rho v}{y} \quad \frac{\rho w}{z} \quad \frac{\rho}{t}
$$

3.10 Fluid Kinematics

Now if ρ remains constant, then only we can write

$$
\vec{\nabla} \cdot \vec{V}=0
$$

i.e. $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$
hence incompressibleflow
22. Incompressible flow condition
$\nabla \cdot \vec{V}=0$
24. C is the fal se statement

2D incompressibleflow continuity equation.
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
$\frac{\partial(\mathrm{Ax})}{\partial \mathrm{x}}+\frac{\partial(-\mathrm{Ay})}{\partial \mathrm{y}}=0$
$A-A=0$ it satisfies continuity equation.
$\Rightarrow A s \quad \vec{V}=A x \hat{i}-A y \hat{j}$
As $y \rightarrow \infty$ velocity vector field will not be defined along y axis.
Soflow will be along x-axis i.e. 1-D flow.
\Rightarrow Stream line equation for 2D
$\frac{d x}{u}=\frac{d y}{v}$
$\frac{d x}{A x}=\frac{d y}{-A y}$
$\ln x=-\ln y+\ln c$
$\ln x y=\ln c$
$x y=c \rightarrow$ streamline equation
25. x direction scalar of velocity field,
$\mathrm{u}=\frac{\mathrm{dx}}{\mathrm{dt}}$
$\mathrm{u}=-\mathrm{kx} . \mathrm{e}^{-\mathrm{kt}}$
y direction scalar of velocity field
$v=\frac{d y}{d t}$
$v=k y_{0} e^{k t}$
$\vec{V}=u \hat{i}+v \hat{j}$
$\vec{V}=-k x_{0} e^{-k t} \hat{i}+k y_{0} e^{k t} \hat{j}$
$u \& v$ are non zero scalar $t \geq 0$ so it is 2D flow.
2D possibleflow field
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0$
$\frac{\partial}{\partial \mathrm{x}}\left(-\mathrm{k} \mathrm{x}_{0} \mathrm{e}^{-\mathrm{kt}}\right)+\frac{\partial}{\partial \mathrm{y}}\left(\mathrm{ky} \mathrm{y}_{0} \mathrm{e}^{\mathrm{kt}}\right)=0$
$0+0=0$ continuity satisfied.
$\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=+\mathrm{k}^{2} \mathrm{x}_{0} \mathrm{e}^{-\mathrm{kt}}$
$\frac{\partial v}{\partial t}=\mathrm{k}^{2} \mathrm{y}_{0} \mathrm{e}^{\mathrm{kt}}$
$\frac{\partial u}{\partial t} \neq 0$
$\frac{\partial \mathrm{v}}{\partial \mathrm{t}} \neq 0$
So, flow is unsteady.
26. As Given that

The velocity field of a two dimensional;

$$
\begin{aligned}
& \quad \overrightarrow{\mathrm{V}}=2 \sin \mathrm{~h} x \hat{\mathrm{i}}+\mathrm{v}(\mathrm{x}, \mathrm{y}) \hat{\mathrm{j}} \\
& \mathrm{~V}(\mathrm{x}, 0)=\cos \mathrm{hx} \\
& \text { For, incompressible flow } \nabla \cdot \overrightarrow{\mathrm{V}}=0 \\
& \Rightarrow \frac{\partial}{\partial \mathrm{x}}(2 \sin \mathrm{~h} \mathrm{x})+\frac{\partial \mathrm{v}}{\partial \mathrm{y}}=0 \\
& \Rightarrow 2 \cosh \mathrm{x}+\frac{\partial \mathrm{v}}{\partial \mathrm{y}}=0 \\
& \Rightarrow \frac{\partial \mathrm{v}}{\partial \mathrm{y}}=-2 \cosh \mathrm{x} \quad(\therefore \text { By integrating both side }) \\
& \Rightarrow \mathrm{v}=-2 \mathrm{y} \cosh \mathrm{x}+\mathrm{f}(\mathrm{x}) \\
& \therefore \mathrm{v}(\mathrm{x}, 0)=\cosh \mathrm{x} \Rightarrow \mathrm{f}(\mathrm{x})=\cosh \mathrm{x} \\
& \therefore \cosh \mathrm{x}(1-2 \mathrm{y}) \\
& \Rightarrow \mathrm{v}(0,-1)=(1(1-2(-1)) \cos \mathrm{h}(0)=3
\end{aligned}
$$

27. Given: $u_{x}=a x$ and $u_{y}=a y$

Equation of steam line is,

$$
\frac{d u}{u_{x}}=\frac{d y}{u_{y}} \Rightarrow \frac{d u}{a x}=\frac{d y}{a y}
$$

Integrating both sides, we have
$\log (a x)=\log (a y)+\log c$
or $a x=c \cdot a y$
or $x=c y$
Since the steam line is passed through point (1, 2), therefore
$1=2 c$
$\Rightarrow c=\frac{1}{2}$
$\therefore x=\frac{y}{2}$
Hence equation of steam line is
$2 x-y=0$.
28. Given, $u=x^{2} t$ and $v=-2 x y t$

We know, $\frac{\partial \psi}{\partial y}=v=-2 x y t$
$\frac{\partial \Psi}{\partial y}=-u=-x^{2} t$
Integrating equation (i), we get $\psi=-x^{2} y t+f(y)$
Differentiating equation (iii) with respect to y, we get

$$
\begin{equation*}
\frac{\partial \psi}{\partial y}=-x^{2} t+f(y) \tag{v}
\end{equation*}
$$

Equating the value of $\frac{\partial \psi}{\partial y}$ from equations (ii) and (iv), we get
$-x^{2} t=-x^{2} t+f^{\prime}(y)$
Since, $f^{\prime}(y)=0$, thus $f(y)=\mathrm{C}$
(where ' C ' is constant of integration)
$\psi=-x^{2} y t+C$
C is a numerical constant so it can be taken as zero
$\psi=-x^{2} y t$
For equation of stream lines,
$\psi=$ constant
$-x^{2} y t=$ constant
For a particular instance,
$x^{2} y=$ constant
29. $\overline{\mathrm{v}}=2 x y i-x^{2} z j$

Velocity of a vector $=\bar{\nabla} \times \bar{\nabla}$

$$
\begin{aligned}
& =\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
2 x y & -x^{2} z & 0
\end{array}\right| \\
& =\hat{i}\left(0-\frac{\partial}{\partial z}\left(-x^{2} z\right)\right)-\hat{j}\left(0-\frac{\partial}{\partial z}(2 x y)\right) \\
& +
\end{aligned}
$$

$=\hat{i}\left(-x^{2}\right)+\hat{k}(-2 \times z-2 x)$
At (1, 1, 1),
$\bar{\nabla} \times \bar{v}=\hat{i}+\hat{k}(-2-2)=i-4 k$
30. $\left(\frac{d y}{d x}\right)_{\phi} \times\left(\frac{d y}{d x}\right)_{\Psi}=-1$

Slope of equipotential Line

$$
\times \text { slope of stream function }=-1
$$

They are orthogonal to each other.
33. $\operatorname{Here} V(x, y)=u(x, y) \hat{i}+v(x, y) \hat{j}$

As we know that $\mathrm{u}=\frac{-\partial \phi}{\partial \mathrm{x}}$
$\therefore \frac{-\partial \phi}{\partial \mathrm{x}}=-\mathrm{u}(\mathrm{x}, \mathrm{y})$
Similarly $v=\frac{-\partial \phi}{\partial y}$
$\therefore \frac{\partial \phi}{\partial \mathrm{y}}=-\mathrm{v}(\mathrm{x}, \mathrm{y})$
From equations (i) and (ii) we get,
$\frac{\partial y}{\partial x}=\frac{\partial \phi}{\partial x} \times \frac{\partial y}{\partial \phi}=\frac{+u(x, y)}{-v(x, y)}=\frac{-u}{v}$
34. $\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}=0$
$a_{1}+b_{2}+c_{3}=0$
$2-4+b_{2}=0$
$b_{2}=2$
36. $v=2 x y i-y^{2} j$
$u=\frac{\partial x}{\partial y}, v=-\frac{\partial x}{\partial x}$
$2 x y=\frac{\partial x}{\partial y}=2$
$2 x y \partial y=\partial \psi$
on integrating
$\psi=x y^{2}+f(x)$
Now $\frac{\partial x}{\partial x}=y^{2}+f^{\prime}(x)-v=y^{2}+f^{\prime}(x)-\left(-y^{2}\right)$
$=y^{1}+f^{\prime}(x)$
$f^{\prime}(x)=0$
$\Rightarrow \mathrm{f}(\mathrm{x})=$ constant
so $\psi=x y^{2}+$ constant
37. $a_{x}=u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}$
$=\frac{x}{x^{2}+y^{2}}\left(\frac{x^{2}+y^{2}-x \times 2 x}{\left(x^{2}+y^{2}\right)^{2}}\right)-\frac{y}{\left(x^{2}+y^{2}\right)}$

$$
\times x \times \frac{1}{\left(x^{2}+y^{2}\right)} \times 2 y
$$

$=\frac{x\left(x^{2}+y^{2}-2 x^{2}\right)-2 x y^{2}}{\left(x^{2}+y^{2}\right)\left(x^{2}+y^{2}\right)}=\frac{-x^{3}-x y^{2}}{\left(x^{2}+y^{2}\right)}$

3.12 Fluid Kinematics

$$
\begin{aligned}
& \therefore a_{x}=\frac{x}{\left(x^{2}+y^{2}\right)^{2}} \\
& a_{y}=u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y} \\
& =\frac{x}{\left(x^{2}+y^{2}\right)} \times \frac{-y}{\left(x^{2}+y^{2}\right)^{2}} \times 2 x \times \frac{y}{\left(x^{2}+y^{2}\right)} \\
& \times\left(\frac{\left(x^{2}+y^{2}\right)-y \times 2 y}{\left(x^{2}+y^{2}\right)^{2}}\right) \\
& =\frac{-2 x^{2} y+y x^{2}-y^{3}}{\left(x^{2}+y^{2}\right)^{3}}=\frac{-y}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

The velocity components are not functions of time, so flow is steady according to continuity equation,
$\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=\frac{-\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}+\frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=0$
Since it satisfies the above continuity equation for 2 D and incompressible flow.
\therefore The flow is incompressible.
38. $\vec{v}=\left(-x^{2}+3 y\right) i+(2 x y) j$
$u=-x^{2}+3 y, v=2 x y$
$\frac{\partial u}{\partial x}=-2 x, \frac{\partial v}{\partial x}=2 y$
$\frac{\partial u}{\partial y}=3, \frac{\partial v}{\partial y}=2 x$
Now magnitude of particle at $(1,-1)$
$u=-4, v=-2, \frac{\partial u}{\partial x}=-2, \frac{\partial u}{\partial y}=3$,
$\frac{\partial v}{\partial x}=-2, \frac{\partial v}{\partial y}=2$
$\mathrm{a}_{\mathrm{x}}=\mathrm{u} \frac{\partial \mathrm{u}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{u}}{\partial \mathrm{y}}=(-4) \times(-2)+(-2) \times 3$
$\mathrm{a}_{\mathrm{x}}=8-6=2$
$\mathrm{a}_{\mathrm{y}}=\mathrm{u} \frac{\partial \mathrm{v}}{\partial \mathrm{x}}+\mathrm{v} \frac{\partial \mathrm{v}}{\partial \mathrm{y}}=[(-4) \times(-2)+(-2) \times 2]$
$a_{y}=8-4=4$
$a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{2^{2}+4^{2}}=2 \sqrt{5}$
39. From Navier stokes equation,
$\vec{v}=x \hat{i}-y \hat{j}$
$\mathrm{u}=\mathrm{x}, \mathrm{v}=-\mathrm{y}$
x-momentum
$\frac{\partial(\rho u)^{0}}{\partial \mathrm{t}}+\frac{\partial\left(\rho \mathrm{u}^{2}\right)}{\partial \mathrm{x}}+\frac{\partial(\rho u v)}{\partial \mathrm{y}}+\frac{\partial\left(\rho / \mathrm{uw}^{0}\right)}{\partial z^{0}}$
$=\frac{-\partial \mathrm{p}}{\partial \mathrm{x}}+\frac{1}{\mathbf{R}_{\text {cr }}}\left[\frac{\partial \tau / /_{\mathrm{xx}}^{\mathrm{o}}}{\partial \mathrm{x}}+\frac{\partial \tau / /_{\mathrm{y}}^{\mathrm{o}}}{\partial \mathrm{y}}+\frac{\partial \tau / z \mathrm{z}}{\partial \mathrm{t}}\right]^{0}$
$\frac{-\partial \mathrm{p}}{\partial \mathrm{x}}=\frac{\partial\left(\rho \cdot \mathrm{x}^{2}\right)}{\partial \mathrm{x}}+\frac{\partial(\rho \cdot \mathrm{x} \cdot-\mathrm{y})}{\partial \mathrm{y}}$
$=2 \rho x-\rho x$
$\frac{\partial \mathrm{p}}{\partial \mathrm{x}}=-\rho \mathrm{x}$
Similarly, $\frac{\partial \mathrm{p}}{\partial \mathrm{y}}=-\mathrm{py}$
So, pressure gradient vector
$=\frac{\partial \mathrm{p}}{\partial \mathrm{y}} \hat{\mathrm{i}}+\frac{\partial \mathrm{p}}{\partial \mathrm{y}} \hat{\mathrm{j}}$
$=-\rho x \hat{i}-\rho y \hat{j}$
$\Delta p=-\rho(x \hat{i}+y \hat{j})$

Fluid Dynamics

Bernoulli's Equation, Conservation of Energy and Mass

1. Navier Stoke's equation represents the conservation of
(a) Energy
(b) Mass
(c) Pressure
(d) Momentum
[2000: 1 Mark]
2. The following data about the flow of liquid was observed in a continuous Chemical process plant:

Flow rate	7.5	7.7	7.9	8.1	8.3	8.5
(litres / sec .)	to	to	to	to	to	to
	7.7	7.9	8.1	8.3	8.5	8.7
Frequency	1	5	35	17	12	10

Mean flow rate of the liquid is
(a) 8.00 liters $/ \mathrm{s}$
(b) 8.06 liters $/ \mathrm{s}$
(c) 8.16 liters/s
(d) 8.26 liters/s
[2004:2 Marks]
3. Consider steady, incompressible and irrotational flow through a reducer in a horizontal pipe where the diameter is reduced from 20 cm to 10 cm . The pressure in the 20 cm pipe just upstream of the reducer is 150 kPa . The fluid has a vapour pressure of 50 kPa and a specific weight of $5 \mathrm{kN} / \mathrm{m}^{3}$. Neglecting frictional effects, the maximum discharge (in $\mathrm{m}^{3} / \mathrm{s}$) that can pass through the reducer without causing cavitation is
(a) 0.05
(b) 0.16
(c) 0.27
(d) 0.38
[2009:2 Marks]
4. Consider steady flow of water in a situation where two pipe lines (pipe 1 and pipe 2) combine into a single pipe line (pipe 3) as shown in figure. The cross-sectional'area of all three pipelines are constant. The following data is given

Pipe number	Area (m $\left.\mathbf{m}^{\mathbf{2}}\right)$	Velocity (m/s)
1	1	1
2	2	2
3	2.5	$?$

Assuming the water properties and the velocities to be uniform across the cross-section of the inlets and the outlet, the exit velocity (in m / s) in pipe 3 is
(a) 1
(b) 1.5
(c) 2
(d) 2.5
[2009:2 Marks]
5. Within a boundary layer for a steady incompressible flow, the Bernoulli equation
(a) holds because the flow is steady
(b) holds because the flow is incompressible
(c) holds because the flow is transitional
(d) does not hold because the flow is frictional
[2015: 1 Mark, Set-2]
6. Air flows at the rate of $1.5 \mathrm{~m}^{3} / \mathrm{s}$ through a horizontal pipe with a gradually reducing crosssection as shown in the figure. The two crosssections of the pipe have diameters of 400 mm and 200 mm . Take the air density as $1.2 \mathrm{~kg} / \mathrm{m}^{3}$ and assume inviscid incompressible flow. The change in pressure ($\mathrm{p}_{2}-\mathrm{p}_{1}$) (in kPa) between sections 1 and 2 is

(a) -1.28
(b) 2.56
(c) -2.13
(d) 1.28
[2018: 2 Marks, Set-2]
7. Steady compressible flow of air takes place through an adiabatic converging-diverging nozzle as shown in the figure. For a particular value of pressure differences across the nozzle, a stationary normal shock wave forms in the diverging section of the nozzle. If $\mathrm{E} \& \mathrm{~F}$ denote
the flow conditions just upstream \& downstream of the normal shock respectively, which of the following statements is/are True?

(a) Density of E is lower than the density at F
(b) Static pressure at E is lower than its static processes at F
(c) Mach number at E is lower than the Mach number at F
(d) specific gravity at E is lower than specific gravity at F .
[2024 : 2 Marks]

Flow Measuring Devices

8. Air flows through a venturi and into atmosphere. Air density is ρ_{a}; atmospheric pressure is ρ_{a}; throat diameter is D_{t}; exit diameter is D and exit velocity is U . The throat is connected to a cylinder containing a frictionless piston attached to a spring. The spring constant is k . The bottom surface of the piston is exposed to atmosphere. Due to the flow, the piston moves by distance x. Assuming incompressible frictionless flow, x is

(a) $\left(\rho \mathrm{U}^{2} / 2 \mathrm{k}\right) \pi \mathrm{D}^{2}{ }_{\mathrm{s}}$
(b) $\left(\rho \mathrm{U}^{2} / 8 \mathrm{k}\right)\left(\frac{\mathrm{D}^{2}}{\mathrm{D}_{\mathrm{t}}^{2}}-1\right) \pi \mathrm{D}_{\mathrm{s}}^{2}$
(c) $\left(\rho \mathrm{U}^{2} / 2 \mathrm{k}\right)\left(\frac{\mathrm{D}^{2}}{\mathrm{D}_{\mathrm{t}}^{2}}-1\right) \pi \mathrm{D}_{\mathrm{s}}^{2}$
(d) $\left(\rho \mathrm{U}^{2} / 8 \mathrm{k}\right)\left(\frac{\mathrm{D}^{4}}{\mathrm{D}_{\mathrm{t}}^{4}}-1\right) \pi \mathrm{D}_{\mathrm{S}}^{2} \quad$ [2003:2 Marks]
9. A venturimeter of 20 mm throat diameter is used to measure the velocity of water in a horizontal pipe of 40 mm diameter. If the pressure difference between the pipe and throat sections is found to be 30 kPa then, neglecting frictional losses, the flow velocity is
(a) $0.2 \mathrm{~m} / \mathrm{s}$
(b) $1.0 \mathrm{~m} / \mathrm{s}$
(c) $1.4 \mathrm{~m} / \mathrm{s}$
(d) $2.0 \mathrm{~m} / \mathrm{s}$
[2005:2 Marks]
10. A U-tube manometer with a small quantity of mercury is used to measure the static pressure difference between two locations A and B in a conical section through which an incompressible fluid flows. At a particular flow rate, the mercury column appears as shown in the figure. The density of mercury is $13600 \mathrm{~kg} /$ m^{3} and $\mathrm{g}-9.81 \mathrm{~m} / \mathrm{s}^{2}$. Which of the following is correct?

(a) Flow direction is A to B and $\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=20 \mathrm{kPa}$
(b) Flow direction is Bto A and $\mathrm{p}_{\mathrm{A}}-\mathrm{p}_{\mathrm{B}}=1.4 \mathrm{kPa}$
(c) Flow direction is A to B and $p_{B}-p_{A}=20 \mathrm{kPa}$
(d) Flow direction is B to A and $\mathrm{p}_{\mathrm{B}}-\mathrm{p}_{\mathrm{A}}=1.4 \mathrm{kPa}$
[2005:2 Marks]
11. Figure shows the schematic for the measurement of velocity of air (density = $1.2 \mathrm{~kg} / \mathrm{m}^{3}$) through a constant-area duct using a pitot tube and a water tube manometer. The differential head of water (density = $1000 \mathrm{~kg} / \mathrm{m}^{3}$) in the two columns of the manometer is 10 mm . Take acceleration due to gravity as $9.8 \mathrm{~m} / \mathrm{s}^{2}$. The velocity of air in m / s is

(a) 6.4
(b) 9.0
(c) 12.8
(d) 25.6
[2011:2 Marks]
12. A Prandtl tube (Pitot-static tube with $C=1$) is used to measure the velocity of water. The differential manometer reading is 10 mm of liquid coiumn with a relative density of 10 . Assuming $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, the velocity of water (in m / s) is \qquad - [2015 : 2 Marks, Set-3]
13. Water $\left(\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}\right)$ flows through a venturimeter with inlet diameter 80 mm and throat diameter 40 mm . The inlet and throat gauge pressures are measured to be 400 kPa and 130 kPa respectively. Assuming the venturimeter to be horizontal and neglecting friction, the inlet velocity (in m / s) is \qquad —.
[2015 : 2 Marks, Set-1]
14. The arrangement shown in the figure measures the velocity V of a gas of density $1 \mathrm{~kg} / \mathrm{m}^{3}$ flowing through a pipe. The acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$. If the manometric fluid is water (density $1000 \mathrm{~kg} / \mathrm{m}^{3}$) and the velocity V is $20 \mathrm{~m} / \mathrm{s}$, the differential head h (in mm) between the two arms of the manometer is \qquad _.

[2017: 2 Marks, Set-2]
15. A liquid fills a horizontal capillary tube whose one end is dipped in a large pool of the liquid. Experiment shows that the distance L travelled by the liquid meniscus inside the capillary in time t is given by

$$
\mathrm{L}=\mathrm{k} \cdot \gamma^{\mathrm{a}} \cdot \mathrm{R}^{\mathrm{b}} \mu^{\mathrm{c}} \cdot \sqrt{\mathrm{t}}
$$

Where γ is the surface tension. R is the inner radius of the capillary and μ is the dynamic viscosity of the liquid. If k is a dimensionless constant, the exponent a is \qquad [Round off to the one decimalplaces] [2024:2 Marks]

Flow through Orifice and Mouthpiece

16. A water container is kept on a weighing balance. Water from a tap is falling vertically into the container with a volume flow rate of Q; the velocity of the water when it hits the water surface is U. At a particular instant of time the total mass of the container and water is m . The force registered by the weighing balance at this instant of time is
(a) $\mathrm{mg}+\rho \mathrm{QU}$
(b) $\mathrm{mg}+2 \rho \mathrm{QU}$
(c) $\mathrm{mg}+\rho \mathrm{QU}^{2} / 2$
(d) $\rho Q \mathrm{U}^{2} / 2$
[2003:2 Marks]
17. Water is coming out from a tap and a falls vertically downwards. At the tap opening, the stream diameter is 20 mm with uniform velocity of $2 \mathrm{~m} / \mathrm{s}$. Acceleration due to gravity is $9.81 \mathrm{~m} / \mathrm{s}^{2}$. Assuming steady, inviscid flow, constant atmospheric pressure everywhere and neglecting curvature and surface tension effects, the diameter in mm of the stream 0.5 m below the tap is approximately
(a) 10
(b) 15
(c) 20
(d) 25
[2013: 2 Marks]
18. The water jet exiting from a stationary tank through a circular opening of diameter 300 mm impinges on a rigid wall as shown in the figure. Neglect all minor losses and assume the water level in the tank to remain constant. The net horizontal force experienced by the wall is \qquad kN . Density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
Acceleration due to gravity $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

[2016: 2 Marks, Set-3]
19. A tank open at the top with a water level of 1 m , as shown in the figure, has a hole at a height of 0.5 m . A free jet leaves horizontally from the smooth hole. The distance X (in m) where the jet strikes the floor is

(a) 0.5
(b) 1.0
(c) 2.0
(d) 4.0
[2018: 2 Marks, Set-1]
4.4 Fluid Dynamics
20. A frictionless circular piston of area $10^{-2} \mathrm{~m}^{2}$ and mass 100 kg sinks into a cylindrical container of the same area filled with water of density $1000 \mathrm{~kg} / \mathrm{m}^{3}$ as shown in the figure.
The container has a hole of area $10^{-3} \mathrm{~m}^{2}$ at the bottom that is open to the atmosphere. Assuming there is no leakage from the edges of the piston and considering water to be incompressible, the magnitude of the piston velocity (in m / s) at the instant shown is
\qquad (correct to three decimal places).

[2018: 2 Marks, Set-2]
21. A pressure measurement device fitted on the surface of a submarine, located at a depth H below the surface of an ocean, reads an absolute pressure of 4.2 MPa . The density of sea water is $1050 \mathrm{~kg} / \mathrm{m}^{3}$, the atmospheric pressure is 101 kPa , and the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$. The depth H is \qquad m
(round off to the nearest integer).
[2021: 1 Mark, Set-1]
22. Water flows out from a large tank of crosssectional area $A_{t}=1 \mathrm{~m}^{2}$ through a small rounded orifice of cross-sectional area $A_{0}=1 \mathrm{~cm}^{2}$, located at $y=0$. Initially the water level, measured from $\mathrm{y}=0$, is $\mathrm{H}=1 \mathrm{~m}$. The acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Neglecting any losses, the time taken by water in the tank to reach a level of $y=H / 4$ is
\qquad seconds (round off to one decimal place).
[2021 : 2 Marks, Set-2]
23. A high velocity water jet of cross section area $=$ $0.01 \mathrm{~m}^{2}$ and velocity $=35 \mathrm{~m} / \mathrm{s}$ enters a pipe filled with stagnant water. The diameter of the pipe is 0.32 m . This high velocity water jet entrains additional water from the pipe and the total water leaves the pipe with a velocity $6 \mathrm{~m} / \mathrm{s}$ as shown in the figure.

The flow rate of entrained water is \qquad litres/s (round off to two decimal places).
[2021: 2 Marks, Set-2]
24. A tube of uniform diameter D is immersed in a steady flowing inviscid liquid stream of velocity V, as shown in the figure. Gravitational acceleration is represented by g . The volume flow rate through the tube is \qquad -

(a) $\frac{\pi}{4} D^{2} V$
(b) $\frac{\pi}{4} \mathrm{D}^{2} \sqrt{2 \mathrm{gh}_{2}}$
(c) $\frac{\pi}{4} \mathrm{D}^{2} \sqrt{2 \mathrm{~g}\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)}$
(d) $\frac{\pi}{4} \mathrm{D}^{2} \sqrt{\mathrm{~V}^{2}-2 \mathrm{gh}_{2}}$
[2022: 2 Marks, Set-2]

ANSWERS

1. (d)
2. (c)
3. (b)
4. (c)
5. (d)
6. (a)
7. (a,b,d)
8. (d)
9. (d)
10. (a)
11. (c)
12. (1.328)
13. (6)
14. (20.38)
15. (0.5)
16. (a)
17. (b)
18. (8.76)
19. (b)
20. (1.456)
21. 397 to 399
22. 2257.0 to 2259.0
23. 130.00 to 134.00
24. (d)

* Represents Numerical \& Subjective Questions.

EXPLANATIONS

1. Momentum
2.

Flow rate (litre/sec)	Mean value of flow rate (\boldsymbol{x})	Frequency (\boldsymbol{f})	$\boldsymbol{f x}$
$7.5-7.7$	7.6	1	7.6
$7.7-7.9$	7.8	5	39
$7.9-8.1$	8.0	35	280
$8.1-8.3$	8.2	17	139.4
$8.3-8.5$	8.4	12	100.8
$8.5-8.7$	8.6	10	86
		$\Sigma f=80$	$\Sigma f x=652.8$

$\therefore \quad$ Mean flow rate $=\frac{\Sigma f x}{\Sigma f}=\frac{652.8}{80}=8.16$.
3. Considering potential head difference $=0$,
i.e $z_{1}=z_{2}$

Apply Bernoulli's theorem

$$
\frac{\mathrm{p}}{\rho g}+\frac{v^{2}}{2 g}=\mathrm{C}
$$

$$
\frac{p_{1}}{w_{1}}+\frac{v_{1}^{2}}{2 g}=\frac{p_{2}}{w_{2}}+\frac{v_{2}^{2}}{2 g}
$$

But $w_{1}=w_{2}=w=5$ (incompressible flow)

$$
\begin{align*}
& \therefore \quad \frac{150}{5}+\frac{v_{1}^{2}}{2 g}=\frac{50}{5}+\frac{v_{2}^{2}}{2 g} \\
& \text { or } \quad \frac{v_{2}^{2}-v_{1}^{2}}{2 g}=\frac{150-5}{5} \\
& \text { or } \quad \frac{v_{2}^{2}-v_{1}^{2}}{2 g}=20 \mathrm{~m} \tag{1}
\end{align*}
$$

Also, discharge, $\mathrm{Q}=\left(\frac{\pi}{4} d_{1}^{2}\right) v_{1}=\left(\frac{\pi}{4} d_{2}^{2}\right) v_{2}$
or $\frac{v_{1}}{v_{2}}=\left(\frac{d_{2}}{d_{1}}\right)^{2}=\left(\frac{10}{20}\right)^{2}$
or $v_{1}=\frac{v_{2}}{4}$
From equations (1) and (2)
$\frac{v_{2}^{2}-\frac{v_{2}^{2}}{16}}{2 g}=20$
or $\frac{15 v_{2}^{2}}{32 g}=20$
or $v_{2}=\sqrt{\frac{20 \times 32 g}{15}}=20.45 \mathrm{~m} / \mathrm{s}$
\therefore Discharge, $\mathrm{Q}=\left(\frac{\pi}{4} d_{2}^{2}\right) v_{2}$
$=\frac{\pi}{4}(0.1)^{2} \times 20.45=0.16 \mathrm{~m}^{3} / \mathrm{sec}$
4. $\mathrm{Q} 1+\mathrm{Q} 2=\mathrm{Q} 3$
$\mathrm{A}_{1} \mathrm{~V}_{1}+\mathrm{A}_{2} \mathrm{~V}_{3}=\mathrm{A}_{3} \mathrm{~V}_{3}$
$1+4=2.5 \mathrm{~V}_{3}$ or $V_{3}=2 \mathrm{~m} / \mathrm{s}$
5. Bernoulli equation does not hold because the flow is frictional.
6. $\frac{\mathrm{p}_{1}}{\delta \mathrm{~g}}+\frac{\mathrm{V}_{1^{2}}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{2}}{\delta \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2}[\mathrm{Z}=$ constan t$]$
$\mathrm{A}_{1}=\frac{\pi}{4} \times 0.4^{2}=0.1256 \mathrm{~m}^{2}$
$\mathrm{A}_{2}=\frac{\pi}{4} \times 0.2^{2}=0.0314 \mathrm{~m}^{2}$
4.6 Fluid Dynamics

$$
\begin{aligned}
& \frac{\mathrm{P}_{2}-\mathrm{P}_{1}}{\delta \mathrm{~g}}=\frac{\mathrm{V}_{1}^{2}-\mathrm{V}_{2}^{2}}{2 \mathrm{~g}} \\
& \frac{\mathrm{P}_{2}-\mathrm{P}_{1}}{1.2}=\frac{1}{2}\left[\frac{\mathrm{Q}^{2}}{\mathrm{~A}_{1}^{2}}-\frac{\mathrm{Q}^{2}}{\mathrm{~A}_{2}^{2}}\right] \\
& \mathrm{P}_{2}-\mathrm{P}_{1}=0.6 \times(1.5)^{2}\left[\frac{1}{\mathrm{~A}_{1}^{2}} \frac{-1}{\mathrm{~A}_{2}^{2}}\right] \\
& \mathrm{P}_{2}-\mathrm{P}_{1}=1.35\left[\frac{1}{0.01577}-\frac{1}{0.00985}\right] \\
& =1.35[63.41-1015.22] \\
& =-1.28 \times 10^{3} \mathrm{Pascal} \\
& =-1.28 \mathrm{kPa}
\end{aligned}
$$

7. a. $\quad \rho_{\mathrm{E}}<\rho_{\mathrm{f}}$ Density after shock will increase \rightarrow Correct statement.
b. $\rho_{\mathrm{E}}<\rho_{\mathrm{f}}$ Static pressure at E is lower than the static process at $\mathrm{F} \rightarrow$ correct statement.
c. $\mathrm{M}_{\mathrm{E}}<\mathrm{M}_{\mathrm{F}} \rightarrow$ wrong as velocity decreases across shock wave \rightarrow wrong statement.
d. Entropy accross a shock wave always increases as it is highly irreversible process \rightarrow correct statement.
Hence, options ($\mathrm{a}, \mathrm{b} \& \mathrm{~d}$) are the correct answer.
8.

Applying Bernoulli's equation at points (1) and (2), we have

$$
\frac{\mathrm{P}_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}+z_{1}=\frac{\mathrm{P}_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}+z_{2}
$$

Since venturi is horizontal
$z_{1}=z_{2}$
Now $\left(\frac{\mathrm{P}_{1}}{\rho g}-\frac{\mathrm{P}_{2}}{\rho g}\right)=\frac{v_{2}^{2}}{2 g}-\frac{v_{1}^{2}}{2 g}$
$\Rightarrow\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)=\frac{\rho g}{2 g}\left(v_{2}^{2}-v_{1}^{2}\right)=\frac{\rho}{2}\left(v_{2}^{2}-v_{1}^{2}\right)$
Since $\mathrm{P}_{2}=\mathrm{P}_{a}=$ atmospheric pressure
$\therefore\left(\mathrm{P}_{1}-\mathrm{P}_{a}\right)=\frac{\rho}{2}\left(v_{2}^{2}-v_{1}^{2}\right)$

Applying continuity equation at points (i) and (ii), we have
$\mathrm{A}_{1} v_{1}=\mathrm{A}_{2} v_{2}$
$\Rightarrow v_{1}=\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right) v_{2}$ since $\mathrm{V}_{2}=\mathrm{U}$
$v_{1}=\left(\frac{\frac{\pi}{4} \mathrm{D}^{2}}{\frac{\pi}{4} \mathrm{D}_{t}^{2}}\right) \mathrm{U}$
$\Rightarrow v_{1}=\left(\frac{\mathrm{D}}{\mathrm{D}_{t}}\right)^{2} \mathrm{U}$
From equation (i),
$\mathrm{P}_{1}-\mathrm{P}_{a}=\frac{\rho}{2}\left[v^{2}-\left(\frac{\mathrm{D}}{\mathrm{D}_{t}}\right)^{2} \mathrm{U}^{2}\right]$
$=\frac{\rho}{2} \mathrm{U}^{2}\left[1-\frac{\mathrm{D}^{4}}{\mathrm{D}_{t}^{4}}\right]$
At point P
Spring force $=$ pressure force due air

$$
\begin{aligned}
& -k x=\frac{\pi}{4} \mathrm{D}_{s}^{2} \times \frac{\rho \mathrm{U}^{2}}{2}\left[1-\frac{\mathrm{D}^{4}}{\mathrm{D}_{t}^{4}}\right] \\
& \Rightarrow x=\frac{\pi}{8} \frac{\mathrm{D}_{s}^{2} \rho \mathrm{U}^{2}}{k}\left[1-\frac{\mathrm{D}^{4}}{\mathrm{D}_{t}^{4}}\right]
\end{aligned}
$$

9. We know, $\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$

P $\quad V_{2}=\frac{D_{1}^{2}}{D_{2}^{2}} V_{1}=\frac{16}{4} V_{1}$

$\therefore \mathrm{V}_{2}=4 \mathrm{~V}_{1}$
Applying Bernoulli's Equation

$$
\frac{\mathrm{P}_{1}}{\rho g}+\frac{\mathrm{V}_{1}^{2}}{2 g}+z_{1}=\frac{\mathrm{P}_{2}}{\rho g}+\frac{\mathrm{V}_{2}^{2}}{2 g}+z_{2}
$$

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{e g}=\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{1}^{2}}{2 g} \\
& \Rightarrow \frac{15 \mathrm{~V}_{1}^{2}}{2}=\frac{30 \times 10^{3}}{1000} \\
& \Rightarrow \mathrm{~V}_{1}^{2}=4 \\
& \Rightarrow \mathrm{~V}_{1}=2.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

So velocity of flow is $2.0 \mathrm{~m} / \mathrm{sec}$
10.

$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{B}}=\mathrm{rg} . \mathrm{D} h$
$=13600 \times 9.81 \times .15$
$=20 \mathrm{kPa}$
As pressure is decreasing from A to B, so flow direction is A to B.
11. From Bernoulli's equation
$\frac{V_{1}^{2}-V_{2}^{2}}{2 g}=\frac{p_{2}-p_{1}}{\rho_{a} g}$
$\Rightarrow \mathrm{V}_{1}=\sqrt{\frac{2\left(\mathrm{p}_{2}-\mathrm{p}_{1}\right)}{\rho_{\mathrm{a}}}}$
But $p_{2}-p_{1}=(\rho g h)_{\text {water }}$
$=9810 \times 10 \times 10^{-3}$
$=98.1 \mathrm{~N} / \mathrm{m}^{2}$
$\therefore \mathrm{V}_{1}=\sqrt{\frac{2 \times 98.1}{1.2}}=12.8 \mathrm{~m} / \mathrm{s}$
12. Velocity as water $=\mathrm{C}_{v} \sqrt{2 g h}$
$\mathrm{C}_{v}=1$ (Given)
$h=x\left[\frac{s_{g}}{s_{0}}-1\right]$
$=0.01(10-1)=0.09 \mathrm{~m}$
\therefore velocity of flow $=$
$\sqrt{2 \times 9.8 \times 0.09}=1.328 \mathrm{~m} / \mathrm{s}$
13. $\frac{p_{1}}{\rho g}+\frac{v_{1}^{2}}{2 g}=\frac{p_{2}}{\rho g}+\frac{v_{2}^{2}}{2 g}\left[\begin{array}{l}p_{1}=400000 \\ p_{2}=130000\end{array}\right]$
$v_{1} \times 80^{2}=v_{2} \times 40^{2}$
$v_{2}=4 v_{1}$
Substituting v_{2} and solving for v_{1} we get $v_{1}=6 \mathrm{~m} / \mathrm{s}$
14. Dynamic pressure of gas $=(\delta \mathrm{gh})_{\text {water }}$
$\frac{1}{2} \delta_{\mathrm{gas}} \mathrm{V}_{2}=\delta_{\mathrm{m}} \times 9.81 \times \mathrm{h}$
$\frac{1}{2} \times 1 \times(20)^{2}=1000 \times 9.81 \times \mathrm{h}$
$\mathrm{h}=0.02038 \mathrm{~m}$ of water
$\mathrm{h}=20.38 \mathrm{~mm}$ of water
15. As Given that
$\mathrm{L}=\mathrm{k} \cdot \gamma^{\mathrm{a}} \cdot \mathrm{R}^{\mathrm{b}} \mu^{\mathrm{c}} \cdot \sqrt{\mathrm{t}}$
$\Rightarrow[\mathrm{L}]=\left[\mathrm{M}^{\circ} \mathrm{L}^{0} \mathrm{~T}^{0}\right]\left[\mathrm{MT}^{-2}\right]^{\mathrm{a}} \cdot[\mathrm{L}]^{\mathrm{b}} \cdot\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]^{c} \cdot[\mathrm{~T}]^{1 / 2}$
$\Rightarrow[\mathrm{L}]=\left[\mathrm{M}^{\mathrm{a}+\mathrm{c}} \mathrm{L}^{\mathrm{b}-\mathrm{c}} \mathrm{T}^{-2 \mathrm{a}-\mathrm{c}+\frac{1}{2}}\right]$
$\Rightarrow \mathrm{a}+\mathrm{c}=0 \Rightarrow \mathrm{c}=-\mathrm{a}$
$\mathrm{b}-\mathrm{c}=1 \Rightarrow \mathrm{c}=\mathrm{b}-1$
$-2 a-c+\frac{1}{2}=0$
By putting the value of c from eq (i) in equation (iii)
$\Rightarrow-2 \mathrm{a}-(-\mathrm{a})+\frac{1}{2}=0$
$\Rightarrow-\mathrm{a}+\frac{1}{2}=0$
$\Rightarrow \mathrm{a}=0.5$
Now, from (i),
and,

$$
\begin{aligned}
c & =-0.5 \\
c & =b-1 \\
b & =c+1 \\
& =-0.5+1 \\
& =0.5
\end{aligned}
$$

Hence, the volume of a, b and c are $0.5,0.5,-0.5$.
16. Volume flow rate $=Q$

Mass of water strike $=\rho Q$
Velocity of the water when it hit the water surface $=\mathrm{U}$
Force on weighing balance due to water strike $=$ Initial momentum - final momentum

$$
=\rho Q U-0=\rho Q U
$$

(since final velocity is perpendicular to initial velocity)
Now total force on weighing balance

$$
=m g+\rho Q U
$$

4.8 Fluid Dynamics
17. $\mathrm{Q}=\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$

$$
\Rightarrow \frac{\pi}{4}(20)^{2} \times 2=\frac{\pi}{4} \times \mathrm{d}^{2} \times \sqrt{2 \times 9.8 \times 0.5}
$$

$d \approx 15 \mathrm{~mm}$
18. Force exerted by a jet of water striking fixed wall $=\rho a v^{2}$

$$
\begin{aligned}
& =1000 \times \frac{\pi}{4} \times 0.3^{2} \times \mathrm{V}^{2} \\
& =1000 \times \frac{\pi}{4} \times 0.3^{2} \times\left(2 \times 10 \times 6^{2}\right)[\because \mathrm{V}=\sqrt{2 \mathrm{gh}}] \\
& =8.76 \mathrm{~N}
\end{aligned}
$$

19. $u_{x}=\sqrt{2 g} h$

Now for distance x we require u_{x} so-
$x=u_{x} \cdot t+\frac{1}{2} \times a \times b$
$x=3.13 t$
(\because acceleration (a) $=0$ in horizontal direction)
Now for $t \Rightarrow y=u_{y} t+\frac{1}{2} g t^{2}$
$\Rightarrow 0.5=0+\frac{1}{2} \times 9.81 \times \mathrm{t}^{2} \quad\left[\because \mathrm{u}_{\mathrm{y}}=0\right]$
$\mathrm{t}=0.319 \mathrm{sec}$.
so distance, $x=3.13 \times 319=1 \mathrm{~m}$
20. $A_{1} V_{1}=A_{2} V_{2}$
$\mathrm{V}_{2}=\left(\frac{\mathrm{A}_{2}}{\mathrm{~V}_{2}}\right) \mathrm{V}_{1}$
By applying Bernoulli's equation between points (1) \& (2), we get

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\delta \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1}=\frac{\mathrm{P}_{2}}{\delta \mathrm{~g}}+\frac{\mathrm{V}_{2}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{2} \\
& {\left[\mathrm{P}_{\mathrm{atm}}+\frac{100 \times 10}{10^{-2}}\right]+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+0.5=\frac{\mathrm{p}_{\mathrm{atm}}}{\delta \mathrm{~g}}+\frac{\mathrm{A}_{1}^{2}}{\mathrm{~A}_{2}^{2}} \times \frac{\mathrm{V}_{1}^{2}}{2 \mathrm{y}}} \\
& \frac{100 \times 10}{10^{-2} \times 1000 \times 10}+0.5=\left(\frac{\mathrm{A}_{1}^{2}}{\mathrm{~A}_{2}^{2}}-1\right) \frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}} \\
& 10+0.5=\left(10^{2}-1\right) \frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}} \Rightarrow \mathrm{~V}_{1}=1.456 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

21. As given,

Density of sea water, $(\rho)=1050 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{atm}}=101 \mathrm{kPa} \\
& \quad=101 \times 10^{3} \mathrm{~Pa}=101 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} \\
& \mathrm{~g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

As we know that,
Pressure on the submarine,
$\left(\mathrm{P}_{\mathrm{abs}}\right)=\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gH}$
$4.2 \times 10^{6}=101 \times 10^{3}+(1050 \times 9.8 \times \mathrm{H})$
$\mathrm{H}=398.35 \mathrm{~m}$
22. As given that,

Cross sectional area of tank $\left(A_{t}\right)=1 m^{2}$
Cross sectional of area orifice $\left(\mathrm{A}_{0}\right)=1 \mathrm{~cm}^{2}$

$$
=1 \times 10^{-4} \mathrm{~m}^{2}
$$

Initially Height of water, $(H)=1 \mathrm{~m}$

$$
\mathrm{g}=9.8 \mathrm{~m} / \mathrm{sec}^{2}
$$

According to question.

Now, time taken to reach a level of water $y=\frac{H}{4}$ will be find out as follows,

$$
\begin{aligned}
& m_{\mathrm{in}}-\mathrm{m}_{\mathrm{out}}=\mathrm{m}_{\mathrm{cu}} \\
& \mathrm{~m}_{\mathrm{in}}=0
\end{aligned}
$$

$$
-\rho \mathrm{A}_{0} \sqrt{2 \mathrm{gH}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\rho \mathrm{~A}_{\mathrm{t}} \mathrm{dH}\right)
$$

$$
-\mathrm{A}_{0} \sqrt{2 \mathrm{gH}}=\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{~A}_{\mathrm{t}} \mathrm{dH}\right)
$$

$$
-\mathrm{A}_{0} \sqrt{2 \mathrm{gH}}=\mathrm{d}\left(\mathrm{~A}_{\mathrm{t}} \mathrm{dH}\right)
$$

By integration on both sides :

$$
\begin{aligned}
& -\mathrm{A}_{0} \sqrt{2 \mathrm{gH}}(\mathrm{t}-0)=\mathrm{A}_{\mathrm{t}}(\mathrm{dH}) \\
& \mathrm{t}=\frac{-\mathrm{A}}{\mathrm{~A}_{0} \sqrt{2 \mathrm{~g}}}\left(\frac{\mathrm{dH}}{\sqrt{\mathrm{H}}}\right) \\
& \mathrm{t}=\frac{-\mathrm{A}_{\mathrm{t}}}{\mathrm{~A}_{0} \sqrt{2 \mathrm{~g}}} \int_{1}^{0.25} \frac{\mathrm{dH}}{\sqrt{\mathrm{H}}}=\frac{\mathrm{A}}{\mathrm{~A}_{0}(\sqrt{29})} \int_{0.25}^{1} \frac{\mathrm{dH}}{\sqrt{\mathrm{H}}} \\
& =\frac{(1)}{\left(1 \times 10^{-4} \times \sqrt{2 \times 9.8}\right)}[2 \sqrt{\mathrm{H}}]_{0.25}^{1} \\
& \mathrm{t}=2258 \text { seconds }
\end{aligned}
$$

23. As given figure :

As given data,
$d=$ diameter of jet, velocity of jet $\left(V_{\text {jet }}\right)=35 \mathrm{msec}$
$\mathrm{a}=$ cross-sectional area of jet $=0.01 \mathrm{~m}^{2}$
$\mathrm{D}=$ Diameter of pipe $=0.32 \mathrm{~m}$,
$\mathrm{V}_{0}=$ Total water outlet velocity $=6 \mathrm{~m} / \mathrm{sec}$
$\rho=$ Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
As we know that,
Cross-sectional area of pipe $(A)=\frac{\pi}{4} D^{2}$

$$
\mathrm{A}=\frac{\pi}{4}\left(0.32^{2}\right)=0.080 \mathrm{~m}^{2}
$$

Now, applying conservation of mass of principle,
Mass flow rate of jet + Mass flow rate of entrained water (or) stagnant water = total mass flow rate $\mathrm{\rho aV}_{\text {jet }}$ $+e($ flow rate stagnant water or entrained $)=\rho A V_{0}$
So, $\mathrm{aV}_{\text {jet }}+(\mathrm{Q})=\mathrm{AV}_{0}$
$(0.01)(35)+(Q)=(0.080)(6)$
$\mathrm{Q}=0.13 \mathrm{~m}^{3} / \mathrm{sec}=130$ litrers $/ \mathrm{sec}$
Hence, the flow rate of entrained water is 130 litrers/sec.

4.10 Fluid Dynamics

24. According to the question

Pressure at point (1) $=\rho g\left(h_{1}+h_{2}\right) P_{1}$
At point ' O ' where velocity of fluid is V is $P_{o}=\rho g h_{1}$
Applying bernoulli's equation between point 1 and 2

$$
\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+Z_{2}
$$

So, $\quad \frac{\mathrm{P}_{1}}{\rho \mathrm{~g}}+\mathrm{Z}_{1}=0+\mathrm{Z}_{2} \quad\left[\because \mathrm{~A}_{1}=\mathrm{A}_{2} \Rightarrow \mathrm{~V}_{1}=\mathrm{V}_{2}\right]$

$$
\begin{aligned}
& \mathrm{P}_{1}=\rho \mathrm{g}\left(\mathrm{Z}_{1}-\mathrm{Z}_{2}\right) \\
& =\rho g\left(h_{1}+h_{2}\right) \\
& \therefore \quad \mathrm{P}_{0}=\rho \mathrm{gh}_{1} \\
& \begin{aligned}
\frac{\mathrm{P}_{0}}{\rho \mathrm{~g}}+\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{0} & =\frac{\mathrm{P}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}}+\mathrm{Z}_{1} \quad\left(\therefore \mathrm{Z}_{0}=\mathrm{Z}_{1}\right) \\
\mathrm{Z}_{0} & =\mathrm{Z}_{1}
\end{aligned} \\
& \frac{\rho \mathrm{gh}_{1}}{\rho \mathrm{~g}}+\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}=\frac{\rho \mathrm{g}\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)}{\rho \mathrm{g}}+\frac{\mathrm{V}_{1}^{2}}{2 \mathrm{~g}} \\
& \frac{\mathrm{~V}_{1}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}-\mathrm{h}_{2} \\
& \Rightarrow \quad \mathrm{~V}_{1}=\sqrt{\mathrm{V}^{2}-2 \mathrm{gh}_{2}} \\
& \text { So, } \quad \mathrm{Q}=\mathrm{V}_{1} \mathrm{~A}_{1}=\frac{\pi}{4} \mathrm{D}^{2} \sqrt{\mathrm{~V}^{2}-2 \mathrm{gh}_{2}}
\end{aligned}
$$

Hence, option (d) is the correct answer.

Second Law of Thermodynamics, Carnot Cycle and Entropy

Second Law of Thermodynamics

1. A cycle heat engine does 50 kJ of work per cycle. If the efficiency of the heat engine is 75%. The heat rejected per cycle is [2001:2 Marks]
(a) $16 \frac{2}{3} \mathrm{~kJ}$
(b) $33 \frac{1}{3} \mathrm{~kJ}$
(d) $37 \frac{1}{2} \mathrm{~kJ}$
(c) $66 \frac{1}{2} \mathrm{~kJ}$
2. A solar collector receiving solar radiation at the rate of $0.6 \mathrm{~kW} / \mathrm{m}^{2}$ transforms it to the internal energy of a fluid at an overall efficiency of 50%. The fluid heated to 350 K is used to run a heat engine which rejects heat at 313 K . If the heat engine is to deliver 2.5 kW power, the minimum area of the solar collector required would be
(a) $83.33 \mathrm{~m}^{2}$
(b) $16.66 \mathrm{~m}^{2}$
(c) $39.68 \mathrm{~m}^{2}$
(d) $79.36 \mathrm{~m}^{2}$
[2004:2 Marks]
3. A heat transformer is device that transfers a part of the heat, supplied to it at an intermediate temperature, to a high temperature reservoir while rejecting the remaining part to a low temperature heat sink. In such a heat transformer, 100 kJ of heat is supplied at 350 K . The maximum amount of heat in kJ that can be transferred to 400 K , when the rest is rejected to a heat sink at 300 K is
(a) 12.50
(b) 14.29
(c) 33.33
(d) 57.14 [2007:2 Marks]
4. A cyclic device operates between three thermal reservoirs, as shown in the figure. Heat is transferred to/from the cycle device. It is assumed that heat transfer between each thermal reservoir and the cyclic device takes place across negligible temperature difference. Interactions between the cyclic device and the respective thermal reservoirs that are shown in the figure are all in the form of heat transfer.

The cyclic device can be
(a) a reversible heat engine
(b) a reversible heat pump or a reversible refrigerator
(c) an irreversible heat engine
(d) an irreversible heat pump or an irreversible refrigerator.
[2008: 2 Marks]
5. An irreversible heat engine extracts heat from a high temperature source at a rate of 100 kW and rejects heat to a sink at a rate of 50 kW . The entire work output of the heat engine is used to drive a reversible heat pump operating between a set of independent isothermal heat reservoirs at $17^{\circ} \mathrm{C}$ and $75^{\circ} \mathrm{C}$. The rate (in kW) at which the heat pump delivers heat to its high temperature sink is
(a) 50
(b) 250
(c) 300
(d) 360
[2009:2 Marks]
6. Consider the following two processes;
I. A heat source at 1200 K loses 2500 kJ of heat to a sink at 800 K
II. A heat source at 800 K loses 2000 kJ of heat to a sink at 500 K
Which of the following statements is true?
(a) Process I is more irreversible than Process II
(b) Process II is more irreversible than Process I
(c) Irreversibility associated in both the processes are equal
(d) Both the processes are reversible
[2010:2 Marks]
7. A reversible heat engine receives 2 kJ of heat from a reservoir at 1000 K and a certain amount of heat from a reservoir at 800 K . It rejects 1 kJ of heat to a reservoir at 400 K . The net work output (in kJ) of the cycle is
(a) 0.8
(b) 1.0
(c) 1.4
(c) 2.0
[2014: 2 Marks, Set-1]
8. A source at a temperature of 500 K provides 1000 kJ of heat. The temperature of environment is $27^{\circ} \mathrm{C}$. The maximum useful work (in kJ) that can be obtained from the heat source is \qquad .
[2014 : 1 Mark, Set-3]
9. A Carnot engine (CE-1) works between two temperature reservoirs A and B , where $\mathrm{T}_{\mathrm{A}}=900 \mathrm{~K}$ and $\mathrm{T}_{\mathrm{B}}=500 \mathrm{~K}$. A second Carnot engine (CE-2) works between temperature reservoirs B and C , where $\mathrm{T}_{\mathrm{c}}=300 \mathrm{~K}$. In each cycle of CE-1 and CE-2, all the heat rejected by CE-1 to reservoir B is used by CE-2. For one cycle of operation, if the net Q absorbed by CE-1 from reservoir A is 150 MJ , the net heat rejected to reservoir C by CE-2 (in MJ) is \qquad .
[2015 : 1 Mark, Set-1]
10. The heat removal rate from a refrigerated space and the power input to the compressor are 7.2 kW and 1.8 kW , respectively. The coefficient of performance (COP) of the refrigerator is \qquad _.
[2016: 1 Mark, Set-2]
11. A reversible cycle receives 40 kJ of heat from one heat source at a temperature of $127^{\circ} \mathrm{C}$ and 37 kJ from another heat source at $97^{\circ} \mathrm{C}$. The heat rejected (in kJ) to the heat sink at $47^{\circ} \mathrm{C}$ is \qquad [2016 : 2 Marks, Set-2]
12. A heat pump absorbs 10 kW of heat from outside environment at 250 K while absorbing 15 kW of work. It delivers the heat to a room that must be kept warm at 300 K . The Coefficient of Performance (COP) of the heat pump is \qquad -.
[2017: 1 Mark, Set-1]
13. The figure shows a heat engine (HE) working between two reservoirs. The amount of heat $\left(\mathrm{Q}_{2}\right)$ rejected by the heat engine is drawn by a heat pump (HP). The heat pump receives the entire work output (W) of the heat engine. If temperatures, $T_{1}>T_{3}>T_{2}$, then the relation between the efficiency (η) of the heat engine and the coefficient and the coefficient of performance (COP) of the heat pump is

[2019: 2 Marks, Set-2]
14. The Clausius inequality holds good for
(a) any process
(b) any cycle
(c) only reversible process
(d) only reversible cycle [2022:1 Mark, Set-1]
15. At steady state, $500 \mathrm{~kg} / \mathrm{s}$ of steam enters a turbine with specific enthalpy equal to $3500 \mathrm{~kJ} / \mathrm{kg}$ and specific entropy equal to $6.5 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$. It expands reversibly in the turbine to the condenser pressure. Heat loss occurs reversibly in the turbine at a temperature of 500 K . If the exit specific enthalpy and specific entropy are $2500 \mathrm{~kJ} / \mathrm{kg}$ and $6.3 \mathrm{~kJ} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~K}^{-1}$, respectively, the work output from the turbine is

MW (italicize it). [2022:2 Marks, Set-2]
16. A heat engine extracts heat $\left(Q_{H}\right)$ from a thermal reservoir at a temperature of 1000 K and rejects heat $\left(\mathrm{Q}_{\mathrm{L}}\right)$ to a thermal reservoir at a temperature of 100 K , while producing work (W). Which one of the combinations of $\left[\mathrm{Q}_{\mathrm{H}}, \mathrm{Q}_{\mathrm{L}}\right.$ and W$]$ given is allowed?
(a) $\mathrm{Q}_{\mathrm{H}}=2000 \mathrm{~J}, \mathrm{Q}_{\mathrm{L}}=500 \mathrm{~J}, \mathrm{~W}=1000 \mathrm{~J}$
(b) $\mathrm{Q}_{\mathrm{H}}=2000 \mathrm{~J}, \mathrm{Q}_{\mathrm{L}}=750 \mathrm{~J}, \mathrm{~W}=1250 \mathrm{~J}$
(c) $\mathrm{Q}_{\mathrm{H}}=6000 \mathrm{~J}, \mathrm{Q}_{\mathrm{L}}=500 \mathrm{~J}, \mathrm{~W}=5500 \mathrm{~J}$
(d) $\mathrm{Q}_{\mathrm{H}}=6000 \mathrm{~J}, \mathrm{Q}_{\mathrm{L}}=600 \mathrm{~J}, \mathrm{~W}=5500 \mathrm{~J}$
[2023: 1 Mark]

Carnot Cycle

17. A Carnot cycle is having an efficiency of 0.75 . If the temperature of the high temperature reservoir is $727^{\circ} \mathrm{C}$. What is the temperature of low temperature reservoir?
(a) $23^{\circ} \mathrm{C}$
(b) $-23^{\circ} \mathrm{C}$
(c) $0^{\circ} \mathrm{C}$
(d) $250^{\circ} \mathrm{C}$
[2001 : 2 Marks]

Entropy

18. If a closed system is undergoing an irreversible process, the entropy of the system
(a) must increase
(b) always remains constant
(c) must decrease
(d) can increase, decrease or remain constant
[2009: 1 Mark]
19. One kilogram of water at room temperature is brought into contact with a high temperature thermal reservoir. The entropy change of the universe is
(a) equal to entropy change of the reservoir
(b) equal to entropy change of water
(c) equal to zero
(d) always positive
[2010: 1 Mark]

Common Data Question 20 and 21

In an experimental set-up, air flows between two stations P and Q adiabatically. The direction of flow depends on the pressure and temperature conditions maintained at P and Q . The conditions at station P are 150 kPa and 350 K . The temperature at station Q is 300 K . The following are the properties and relations pertaining to air:
Specific heat at constant pressure,

$$
\mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kgK}
$$

Specific heat at constant volume,

$$
\mathrm{c}_{\mathrm{v}}=0.718 \mathrm{~kJ} / \mathrm{kgK}
$$

Characteristic gas constant,

$$
\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kgK}
$$

Enthalpy, $\mathrm{h}=\mathrm{c}_{\mathrm{p}} \mathrm{T}$.
Internal energy, $u=c_{v} T$.
20. If the air has to flow from station P to station Q , the maximum possible value of pressure in kPa at station Q is close to
(a) 50
(b) 87
(c) 128
(d) 150 [2011:2 Marks]
21. If the pressure at station Q is 50 kPa , the change in entropy $\left(\mathrm{s}_{\mathrm{Q}}-\mathrm{s}_{\mathrm{p}}\right)$ in $\mathrm{kJ} / \mathrm{kgK}$ is
(a) -0.155
(b) 0
(c) 0.160
(d) 0.355
[2011:2 Marks]
22. An ideal gas of mass m and temperature T_{1} undergoes a reversible isothermal process from an initial pressure P_{1} to final pressure P_{2}. The heat loss during the process is Q . The entropy change ΔS of the gas is
(a) $m R \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$
(b) $m R \ln \left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)$
(c) $\mathrm{mRln}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)-\frac{\mathrm{Q}}{\mathrm{T}_{1}}$
(d) zero
[2012: 1 Mark]
23. Which one of the following pairs of equations describes an irreversible heat engine?
(a) $\oint \delta \mathrm{Q}>0$ and $\oint \frac{\delta Q}{T}<0$
(b) $\oint \delta \mathrm{Q}<0$ and $\oint \frac{\delta \mathrm{Q}}{\mathrm{T}}<0$
(c) $\oint \delta Q>0$ and $\oint \frac{\delta Q}{T}>0$
(d) $\oint \delta Q<0$ and $\oint \frac{\delta Q}{T}>0$
[2014: 1 Mark, Set-3]
24. An amount of 100 kW of heat is transferred through a wall in steady State. One side of the wall is maintained at $127^{\circ} \mathrm{C}$ and the other side at $27^{\circ} \mathrm{C}$. The entropy generated (in W / K) due to the heat transfer through the wall is \qquad -
[2014: 2 Marks, Set-3]
25. A closed system contains 10 kg of saturated liquid ammonia at $10^{\circ} \mathrm{C}$. Heat addition required to convert the entire liquid into saturated vapour at a constant pressure is 16.2 MJ . If the entropy of the saturated liquid is $0.88 \mathrm{~kJ} / \mathrm{kgK}$, the entropy (in $\mathrm{kJ} / \mathrm{kgK}$) of saturated vapour is \qquad
[2014: 2 Marks, Set-4]
26. One kg of air ($\mathrm{R}=287 \mathrm{~J} / \mathrm{kgK}$) undergoes an irreversible process between equilibrium state $1\left(20^{\circ} \mathrm{C}, 0.9 \mathrm{~m}^{3}\right)$ and equilibrium state $2\left(20^{\circ} \mathrm{C}, 0.6 \mathrm{~m}^{3}\right)$. The change in entropy $\mathrm{s}_{2}-\mathrm{s}_{1}$ (in $\mathrm{J} / \mathrm{kgK}$) is \qquad . [2015 : 2 Marks, Set-2]
27. One kg of an ideal gas (gas constant, $\mathrm{R}=400 \mathrm{~J} /$ kgK ; specific heat at constant volume, $\mathrm{c}_{\mathrm{p}}=1000$ $\mathrm{J} / \mathrm{kgK}$) at 1 bar , and 300 K is contained in a sealed rigid cylinder. During an adiabatic process, 100 kJ of work is done on the system by a stirrer. The increase in entropy of the system is \qquad J/K. [2017 : 2 Marks, Set-1]
28. One kg of an ideal gas (gas constant $\mathrm{R}=287 \mathrm{~J} /$ kgK) undergoes an irreversible process from state-1 (1 bar, 300 K) to state-2 (2 bar, 300 K). The change in specific entropy $\left(\mathrm{s}_{2}-\mathrm{s}_{1}\right)$ of the gas (in $\mathrm{J} / \mathrm{kgK}$) in the process is \qquad -.
[2017: 2 Marks, Set-2]
29. An ideal gas undergoes a process from state 1 $\left(\mathrm{T}_{1}=300 \mathrm{~K}, \mathrm{p}_{1}=100 \mathrm{kPa}\right)$ to state $2\left(\mathrm{~T}_{2}=600\right.$ $\mathrm{K}, \mathrm{p}_{2}=500 \mathrm{kPa}$). The specific heats of the ideal gas are: $\mathrm{c}_{\mathrm{p}}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$ and $\mathrm{c}_{\mathrm{v}}=0.7 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$. The change in specific entropy of the ideal gas from state 1 to state 2 (in $\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$) is \qquad (correct to two decimal places) [2018: 1 Mark, Set-1]
30. For an ideal gas with constant properties undergoing a quasi-static process, which one of the following represents the change of entropy ($\triangle \mathrm{s}$) from state 1 to 2 ?
(a) $\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{R}_{1}}\right)$
(b) $\Delta \mathrm{s}=\mathrm{c}_{\mathrm{v}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{c}_{\mathrm{p}} \ln \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$
(c) $\Delta \mathrm{s}=\mathrm{c}_{\mathrm{p}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{c}_{\mathrm{p}} \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$
(d) $\Delta \mathrm{s}=\mathrm{c}_{\mathrm{v}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{R} \ln \left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)$
[2018: 1 Mark, Set-2]
31. Air of mass 1 kg . initially at 300 K and 10 bar , is allowed to expand isothermally till it reaches a pressure of 1 bar. Assuming air as an ideal gas with gas constant of $0.287 \mathrm{~kJ} / \mathrm{kg}$ K, the change in entropy of air (in kJ /kg K, round off to two decimal places) is \qquad .
[2019: 1 Mark, Set-1]
32. One kg of air in a closed system undergoes an irreversible process from an initial state of $\mathrm{p}_{1}=1$ bar (absolute) and $\mathrm{T}_{1}=27^{\circ} \mathrm{C}$, to a final state of $p_{2}=3$ bar (absolute) and $\mathrm{T}_{2}=127^{\circ} \mathrm{C}$. If the gas constant of air is $287 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$ and the ratio of the specific heats $\mathrm{g}=1.4$, then the change in the specific entropy (in J/kg.K) of the air in the process is
(a) -26.3
(b) 28.4
(c) 172.0
(d) indeterminate, as the process is irreversible
[2020: 2 Marks, Set-2]
33. An adiabatic vortex tube, shown in the figure given below is supplied with $5 \mathrm{~kg} / \mathrm{s}$ of air (inlet 1) at 500 kPa and 300 K . Two separate streams of air are leaving the device from outlets 2 and 3 . Hot air leaves the device at a rate of $3 \mathrm{~kg} / \mathrm{s}$ from outlet 2 at 100 kPa and 340 K , and $2 \mathrm{~kg} / \mathrm{s}$ of cold air stream is leaving the device from outlet 3 at 100 kPa and 240 K .

Assume constant specific heat of air is $1005 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$ and gas constant is $287 \mathrm{~J} / \mathrm{kg} . \mathrm{K}$. There is no work transfer across the boundary of this device. The rate of entropy generation is \qquad kW / K (round off to one decimal place).
[2021: 2 Marks, Set-2]

ANSWERS

1. (a)	2. (a)	3. (d)	4. (a)	5. (c) 6. (b)	7. (c)	8. (400)	9. (50)	10. (4)
11. (64)	12. (1.67)	13. (c)	14. (b)	15. (450 to 450)	16. (b)	17. (b)	18. (a)	19. (d)
20. (b)	21. (c)	22. (b)	23. (a)	24. (83.33)	25. (6.601		26.	.36)
27. (287.		28. (-198.93)		29. (0.21) 30. (a)	31. (0.66) 32. (a)		33. 2.1 to 2.3	

* Represents Numerical \& Subjective Questions.

EXPLLANATIONS

1. $\eta=0.75$
$\therefore \eta_{\mathrm{HE}}=\frac{\mathrm{W}}{\mathrm{Q}_{1}}=0.75$

or, Net heat input,
$\mathrm{Q}_{1}=\frac{50}{0.75}=\frac{200}{3}$
Also, $\quad W=Q_{1}-Q_{2}$
or $50=\frac{200}{3}-\mathrm{Q}_{2}$
\therefore Net heat required, $\mathrm{Q}_{2}=\frac{50}{3}=16.66 \mathrm{~kJ}$
2. Given; Receiving solar radiation at the rate of $0.6 \mathrm{~kW} / \mathrm{m}^{2}$
Internal energy of fluid after absorbing solar radiation
$=0.6 \times \frac{1}{2} \mathrm{~kW} / \mathrm{m}^{2}=0.3 \mathrm{~kW} / \mathrm{m}^{2}$
$\eta_{\text {engine }}=1-\frac{315}{350}=0.1$
$0.1=\frac{\mathrm{W}}{\mathrm{Q}_{1}}$
$\therefore \mathrm{Q}_{1}=\frac{2.5}{0.1}=25 \mathrm{~kW}$
Let A be minimum area of collector

or $25 \mathrm{~kW}=0.3 \mathrm{~kW} / \mathrm{m}^{2}$
or $A=\frac{25}{0.3}=83.33 \mathrm{~m}^{2}$
3. $\frac{\mathrm{Q}_{\mathrm{H}}}{\mathrm{Q}_{\mathrm{L}}}=\frac{400}{300}-\frac{4}{3}$
$Q_{H}+Q_{L}=Q=100$
$\therefore \frac{4}{3} \mathrm{Q}_{\mathrm{L}}+\mathrm{Q}_{\mathrm{L}}=100$
$\Rightarrow \mathrm{Q}_{\mathrm{L}}=42.85 \mathrm{~kJ}$
$\therefore \mathrm{Q}_{\mathrm{H}}=100-42.85$

$$
=57.14 \mathrm{~kJ}
$$

4. Since heat is taken from the high temperature sources and rejected to low temperature sink, hencethe device is a heat engine not heat pump. Since, the temperature differences are negligible, the engine is reversible.
5.

$\mathrm{W}=\mathrm{Q}_{1}-\mathrm{Q}_{2}$
= $100-50$
$=50 \mathrm{~kW}$
C.O.P $=\frac{348}{348-290}=\frac{Q_{1}}{W}$
$\mathrm{Q}_{1}=300 \mathrm{~kW}$

Alternately

Work output from irreversible heat engine,
$\mathrm{W}=\mathrm{Q}_{1}-\mathrm{Q}_{2}$
$=100-50=50 \mathrm{~kW}$

3.6 Second Law of Thermodynamics, Carnot Cycle and Entropy

Also for irreversible heat engine
$\mathrm{Q}_{1}+\mathrm{W}=\mathrm{Q}_{2}$
$\therefore \mathrm{T}_{1} \Delta \mathrm{~S}+50=\mathrm{T}_{2} \Delta \mathrm{~S}$
or $\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \Delta \mathrm{S}=50$
or $(348-290) \Delta S=50$
or $\Delta S=\frac{50}{58}$
\therefore Rate of heat rejection,
$Q_{2}=T_{2} \Delta S$
$=348 \times \frac{50}{58}=300 \mathrm{~kW}$
6. From Clausius inequality,
$\oint \frac{\partial \mathrm{Q}}{\mathrm{T}}<0$ for irreversible process
i.e., $\frac{\mathrm{Q}_{1}}{\mathrm{~T}_{1}}+\frac{\mathrm{Q}_{2}}{\mathrm{~T}_{2}}+\frac{\mathrm{Q}_{3}}{\mathrm{~T}_{3}}+\ldots<0$

For process I

$\oint \frac{\delta Q}{T}=\frac{2500}{1200}-\frac{2500}{800}=-1.042<0$

For process II

$\oint \frac{\delta \mathrm{Q}}{\mathrm{T}}=\frac{2000}{800}-\frac{2000}{500}=-1.5<0$
Hence process II is more irreversible than process l.
7.

We know that for reversible heat engine, change in entropy is always zero
That is $\Delta \mathrm{S}=0$

$$
\begin{aligned}
& \frac{\mathrm{Q}_{3}}{\mathrm{~T}_{3}}-\left(\frac{\mathrm{Q}_{1}}{\mathrm{~T}_{1}}+\frac{\mathrm{Q}_{2}}{\mathrm{~T}_{2}}\right)=0 \\
& \frac{1}{400}-\frac{2}{1000}-\frac{\mathrm{Q}_{2}}{800}=0 \\
& \mathrm{Q}_{2}=0.4 \mathrm{~kJ} \\
& \mathrm{~W}_{\text {Net }}=\left(\mathrm{Q}_{1}+\mathrm{Q}_{2}\right)-\mathrm{Q}_{3}=(2+0.4)-1=1.4 \mathrm{~kJ}
\end{aligned}
$$

8. $\eta=\frac{\mathrm{W}_{\text {net }}}{\mathrm{Q}_{\text {in }}}=1-\frac{\mathrm{T}_{\sin k}}{\mathrm{~T}_{\text {source }}}$
$1-\frac{300}{500}=\frac{\mathrm{W}_{\text {net }}}{1000}$
$W_{\text {net }}=1000 \times 0.4=400 \mathrm{~kJ}$.

9.

$\eta_{1}=\frac{1-\mathrm{T}_{1}}{\mathrm{~T}_{1}}=\frac{1-500}{900}=4.44$
$Q_{2}=\left(1-\eta_{1}\right) \times Q_{1}=53.33 \mathrm{MJ}$
$\eta_{2}=1-\frac{T_{3}}{\mathrm{~T}_{2}}=1-\frac{300}{500}=0.4$
$\mathrm{Q}_{3}=\left(1-\eta_{2}\right) \times \mathrm{Q}_{2}=50 \mathrm{MJ}$
10.

$\mathrm{COP}=\frac{\mathrm{Q}_{2}}{\mathrm{~W}}=\frac{7.2}{1.8}$
$C O P=4$
11.

$$
\begin{aligned}
& \frac{Q_{1}}{T_{1}}+\frac{Q_{2}}{T_{2}}-\frac{Q_{3}}{T_{3}}>0 \\
& \frac{40}{127+273}+\frac{37}{97+273}-\frac{Q_{3}}{47+273}=0 \\
& Q_{3}=64 \mathrm{~kJ}
\end{aligned}
$$

12.

By question, given:
$\mathrm{Q}_{2}=10 \mathrm{~kW} ; \mathrm{W}=15 \mathrm{~kW}$
$\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{W}=25 \mathrm{~kW}$
$\mathrm{COP}=\frac{\mathrm{Q}_{1}}{\mathrm{~W}}=1.67$
13. Efficiency of heat engine,
$\eta=\frac{W}{Q_{1}}=\frac{\mathrm{Q}_{1}-\mathrm{Q}_{2}}{\mathrm{Q}_{1}}$
$(C O P)_{H . P .}=\frac{Q_{3}}{W}$
$\begin{aligned} \because \quad \mathrm{Q}_{3} & =\mathrm{Q}_{2}+\mathrm{W}=\mathrm{Q}_{2}+\mathrm{Q}_{1}-\mathrm{Q}_{2} \\ \mathrm{Q}_{3} & =\mathrm{Q}_{1}\end{aligned}$
so, $(C O P)_{H . P}=\frac{\mathrm{Q}_{1}}{\mathrm{~W}}$

$$
(\mathrm{COP})_{\mathrm{H} . \mathrm{P}}=\frac{1}{\eta}=\eta^{-1}
$$

14. As we know that

The Clausius inequality holds good for any cycle.
$\oint \frac{\mathrm{dQ}}{\mathrm{T}} \leq 0$
$\oint \frac{\mathrm{dQ}}{\mathrm{T}}=0 \Rightarrow$ Valid for Reversible cycle
$\oint \frac{d Q}{T}<0 \Rightarrow$ Valid for Irreversible cycle
$\oint \frac{\mathrm{dQ}}{\mathrm{T}}>0 \Rightarrow$ Impossible cycle
Hence, the inequality is valid for any cycle.
15. According to the Question;

$$
\dot{\mathrm{S}}_{\text {gen }}=0
$$

As giventhat
$\mathrm{m}_{\mathrm{S}}=500 \mathrm{~kg} / \mathrm{sec}$
$\mathrm{S}_{1}=6.5 \mathrm{~kJ} / \mathrm{kgk}, \mathrm{S}_{2}=6.3 \mathrm{~kJ} / \mathrm{kgK}$
$\mathrm{h}_{1}=350 \mathrm{~kJ} / \mathrm{kg}, \mathrm{h}_{2}=2500 \mathrm{~kJ} / \mathrm{kg}$
Entropy generated can be found by using following relations
$\mathrm{S}_{2}-\mathrm{S}_{1}=\sum \frac{\mathrm{Q}_{\mathrm{j}}}{\mathrm{T}_{\mathrm{j}}}+\mathrm{S}_{\text {gen }}$
For reversible process

$$
\begin{aligned}
0 & =\dot{\mathrm{m}} \mathrm{~s}_{1}-\left\{\mathrm{ms}_{2}+\frac{\mathrm{Q}}{500}\right\} \\
0 & =500 \times\{6.5-6.3\}-\frac{\mathrm{Q}}{500} \\
\dot{\mathrm{Q}} & =50000 \mathrm{~kW} \\
\dot{\mathrm{Q}} & =50 \mathrm{MW}
\end{aligned}
$$

Now, by conservation of energy :

$$
\begin{gathered}
\dot{\mathrm{E}}_{\text {in }}=\dot{\mathrm{E}}_{\text {exit }} \\
\dot{\mathrm{mh}}_{1}=\dot{\mathrm{mh}}_{2}+\dot{\mathrm{Q}}+\dot{\mathrm{W}}_{\mathrm{T}} \\
\dot{\mathrm{~m}}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)=\dot{\mathrm{Q}}+\dot{\mathrm{W}}_{\mathrm{T}} \\
500(3500-2500)=50000+\dot{\mathrm{W}} \\
\dot{\mathrm{~W}}_{\mathrm{T}}=450000 \mathrm{~kW} \\
\dot{\mathrm{~W}}_{\mathrm{T}}=450 \mathrm{MW}
\end{gathered}
$$

16. As we know that,

The rate of heat rejection is minimum for a reversible engine.

3.8 Second Law of Thermodynamics, Carnot Cycle and Entropy

So, for feasible process :

$$
\oint \frac{\delta Q}{T} \leq 0
$$

By taking option (b);

$$
\begin{aligned}
\oint \frac{\delta \mathrm{Q}}{\mathrm{~T}} & =\left(\frac{\mathrm{Q}_{\mathrm{H}}}{\mathrm{~T}_{1}}\right)-\left(\frac{\mathrm{Q}_{\mathrm{L}}}{\mathrm{~T}_{2}}\right) \\
& =\frac{2000}{1000}-\frac{750}{100}=2-7.5 \\
& =-5.5<0
\end{aligned}
$$

Hence, option (b) is correct answer.
17. $1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=0.75$
$\frac{\mathrm{T}_{2}}{273+727}=0.25$
$\mathrm{T}_{2}=250 \mathrm{~K}$
$\mathrm{T}_{2}=273-250$
[$\mathrm{T}_{2}-23^{\circ} \mathrm{C}$]
18. $(\mathrm{ds})_{\text {uni }} \geq 0$
19. (1)

350 K
$\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{\frac{\gamma}{\gamma-1}}$
$\Rightarrow \mathrm{P}_{2}=\left(\frac{300}{350}\right)^{\frac{0.4}{1.4}} \times 150$
$\mathrm{P}_{2}=87.4 \mathrm{kPa}$
$\mathrm{P}_{2}=87 \mathrm{kPa}$
20. $\mathrm{S}_{\mathrm{Q}}-\mathrm{S}_{\mathrm{P}}=\mathrm{C}_{\mathrm{v}} \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)+\mathrm{R} \ln \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$

From perfect gas law,
$\frac{v_{2}}{v_{1}}=\frac{P_{1}}{P_{2}} \frac{T_{2}}{T_{1}}$
$=\frac{150 \times 300}{300 \times 350}=2.57$
$\therefore \mathrm{S}_{\mathrm{Q}}-\mathrm{S}_{\mathrm{p}}=-0.1107+0.287 \ln 2.57$
$=0.16 \mathrm{~kJ} / \mathrm{kgK}$
21. $\Delta \mathrm{s}=\frac{\delta q}{\mathrm{~T}}$ for reversible process

$\delta Q=\delta W=P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}$
$\Delta \mathrm{s}=\frac{\delta \mathrm{q}}{\mathrm{T}}=\mathrm{mR} \ln \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}$
$\left[\Delta \mathrm{s}=\mathrm{mR} \ln \frac{\mathrm{p}_{1}}{\mathrm{p}_{2}}\right]$.
22. For clausius theorem, $\oint \frac{\delta \mathrm{Q}}{\mathrm{T}}<0$ (for irreversible Heat engine).
24. $\Delta S_{1}=\frac{Q}{T_{1}}$

$$
\Delta \mathrm{S}_{2}=\frac{\mathrm{Q}}{\mathrm{~T}_{2}}
$$

$(\Delta)_{\text {generated }}=\Delta S_{1}+\Delta S_{2}$
$=\frac{\mathrm{Q}}{400}-\frac{\mathrm{Q}}{300}$
$=\frac{100 \times 10^{3}}{100}\left(\frac{1}{4}-\frac{1}{3}\right)=10^{3} \times-0.0833$
$=-83.33 \mathrm{~W} / \mathrm{K}$
Entropy generated $=83.33 \mathrm{~W} / \mathrm{K}$.
25. Tds $=d u+p d v$ (closed system)
$283.15 \times 10\left(S_{2}-S_{1}\right)=16.2 \times 10^{3}$
$\therefore \quad S_{2}=0.88+\frac{16.2 \times 10^{3}}{283.15 \times 10}$
$=6.6013 \mathrm{~kJ} / \mathrm{kg}$
26. $-116.36 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$

$$
\begin{aligned}
& \Delta \mathrm{S}=\mathrm{mR} \ln \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} \\
& =(287)(1) \ln \left(\frac{0.6}{0.9}\right) \\
& \Rightarrow-116.36 \mathrm{~J} / \mathrm{kgK}
\end{aligned}
$$

27. Here,
$\mathrm{m}=1 \mathrm{~kg}$
$\mathrm{R}=400 \mathrm{~J} / \mathrm{kgK}$
$\mathrm{C}_{\mathrm{v}}=1000 \mathrm{~J} / \mathrm{kgK}$
$\mathrm{P}_{1}=1 \mathrm{bar}$
$\mathrm{T}_{1}=300 \mathrm{~K}$
$\mathrm{W}=-100 \mathrm{~kJ}=-100 \times 10^{3} \mathrm{~J}$
$\mathrm{Q}=0$
$0=-100 \times 10^{3}+\mathrm{mC}_{\mathrm{v}}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)$
$100 \times 10^{3}=1 \times 1000\left(T_{2}-300\right)$
$\mathrm{T}_{2}=400 \mathrm{~K}$
$\mathrm{V}_{1}=\mathrm{V}_{2}$
$\Rightarrow \ln \frac{V_{2}}{V_{1}}=0$
$\mathrm{S}_{2}-\mathrm{S}_{1}=\mathrm{mC}_{\mathrm{V}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
$S_{2}-S_{1}=1 \times 1000 \times \ln \left(\frac{400}{300}\right)$
$\mathrm{S}_{2}-\mathrm{S}_{1}=287.68 \mathrm{~J} / \mathrm{K}$
28. $\Delta \mathrm{S}=\mathrm{mC}_{\mathrm{p}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-\mathrm{R} \ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}$
$\Delta S=-287 \ln 2$
$\Delta \mathrm{S}=-198.93 \mathrm{~J} / \mathrm{kg} \mathrm{K}$
29. Ideal gas

State-1 : $\mathrm{T}_{1}=300 \mathrm{~K}, \mathrm{P}_{1}=100 \mathrm{kPa}$
State-2 : $\mathrm{T}_{2}=600 \mathrm{~K}, \mathrm{P}_{2}=500 \mathrm{kPa}$,
$c_{p}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}, \mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=\mathrm{R}, \mathrm{c}_{\mathrm{v}}=0.7 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$
$\Rightarrow C_{p}-C_{v}=1-0.7=R$
$\mathrm{R}=0.3 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$

Change in specific entropy

$$
\begin{aligned}
& S_{2}-S_{1}=C_{p} \ln \frac{T_{2}}{T_{1}}-R \ln \frac{P_{2}}{P_{1}} \\
& =1 \times \ln \frac{600}{300}-0.3 \ln \frac{500}{100}=0.21 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}
\end{aligned}
$$

30. $\Delta \mathrm{S}=\mathrm{C}_{\mathrm{p}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-\mathrm{R} \ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}$

$$
\mathrm{Tds}=\mathrm{dh}-\mathrm{vdp}
$$

$$
=C_{p} \mathrm{dt}-\mathrm{vdp}
$$

$$
\mathrm{ds}=\frac{\mathrm{C}_{\mathrm{p}} \mathrm{dt}}{\mathrm{~T}}-\frac{\mathrm{R}}{\mathrm{p}} \mathrm{dp}
$$

$$
\left[\mathrm{ds}=\mathrm{C}_{\mathrm{P}} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}-\mathrm{R} \ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right]
$$

31. Air, $m=1 \mathrm{~kg}$
32. Closed system undergoing irreversible process,

Air, $\mathrm{m}=1 \mathrm{~kg}, \mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kgk}, \gamma=1.4$
Initial state Final state
$\mathrm{P}_{1}=1$ bar (absolute) $\mathrm{P}_{2}=3$ bar (absolute)
$\mathrm{T}_{1}=27^{\circ} \mathrm{C}=300 \mathrm{~K} \quad \mathrm{~T}_{2}=127^{\circ} \mathrm{C}=400 \mathrm{~K}$
Change in the specific entropy of the air in the process,

$$
\begin{aligned}
\Delta \mathrm{S} & =\mathrm{S}_{2}-\mathrm{S}_{1} \\
& =\mathrm{C}_{\mathrm{p}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right) \\
& =1.005 \ln \left(\frac{400}{300}\right)-0.287 \ln \left(\frac{3}{1}\right) \\
& =-0.0262 \frac{\mathrm{~kJ}}{\mathrm{kgk}}=-26.2 \frac{\mathrm{~J}}{\mathrm{kgk}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{T}=300 \mathrm{~K} \xrightarrow{\text { Isothermally }} \begin{array}{l}
\mathrm{T}=300 \mathrm{~K} \\
\mathrm{P}_{2}=1 \text { bar }
\end{array} \\
& P_{1}=10 \mathrm{bar} \\
& \mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{k} \\
& \text { Now, } \quad \Delta \mathrm{s}=\mathrm{S}_{2}-\mathrm{S}_{1} \\
& =m c_{p} \ell n\left(\frac{T_{2}}{T_{1}}\right)^{0}-m R \ell n\left(\frac{P_{2}}{P_{1}}\right) \\
& =-1 \times 0.287 \ln \left(\frac{1}{10}\right) \\
& =0.66 \mathrm{~kJ} / \mathrm{kg} \mathrm{k} \\
& \therefore \quad \Delta \mathrm{~s}=0.66 \mathrm{~kJ} / \mathrm{kg} \mathrm{k}
\end{aligned}
$$

3.10 Second Law of Thermodynamics, Carnot Cycle and Entropy

33. As given figure

As given that
$\mathrm{m}_{1}=5 \mathrm{~kg} / \mathrm{sec}, \mathrm{P}_{1}=500 \mathrm{kPa}, \mathrm{T}_{1}=300 \mathrm{~K}$
$\mathrm{m}_{2}=3 \mathrm{~kg} / \mathrm{sec}, \mathrm{P}_{2}=100 \mathrm{kPa}, \mathrm{T}_{2}=340 \mathrm{~K}$
$\mathrm{m}_{3}=2 \mathrm{~kg} / \mathrm{sec}, \mathrm{P}_{3}=100 \mathrm{kPa}, \mathrm{T}_{3}=240 \mathrm{~K}$
$\mathrm{C}_{\mathrm{p}}=1005 \mathrm{~J} / \mathrm{kgK}$; gas constant $(\mathrm{R})=287 \mathrm{~J} / \mathrm{kgK}$
$R=c_{p}-c_{v} \Rightarrow c_{v}=c_{p}-R=1005-287=718 \mathrm{~J} / \mathrm{kgK}$
Since tube is maintained in adiabatic condition
No entropy transfer from the vortex tube
\therefore Entropy generation = Entropy change

- Entropy transfer
\therefore Entropy generation = Entropy change
$(\because$ entropy transfer $=0)$

As we know that
Entropy change of hot air

$$
\begin{aligned}
& =\mathrm{m}_{2}\left[\mathrm{c}_{\mathrm{p}} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \ell \mathrm{n}\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)\right] \\
& =(3)\left[(1005) \ell \mathrm{n}\left(\frac{340}{300}\right)-(287) \ell \mathrm{n}\left(\frac{100}{500}\right)\right] \\
& =1763.1 \mathrm{~W} / \mathrm{K}
\end{aligned}
$$

Entropy change of cold air

$$
\begin{aligned}
& =\mathrm{m}_{3}\left[\mathrm{c}_{\mathrm{p}} \ell \mathrm{n}\left(\frac{\mathrm{~T}_{3}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \ell \mathrm{n}\left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{1}}\right)\right] \\
& =(2)\left[(1005) \ell \mathrm{n}\left(\frac{240}{300}\right)-(287) \ell \mathrm{n}\left(\frac{100}{500}\right)\right] \\
& =475.30 \mathrm{~W} / \mathrm{K}
\end{aligned}
$$

\therefore Entropy generation $\left(\mathrm{s}_{\mathrm{gen}}\right)$

$$
\begin{aligned}
& =\text { Total entropy change } \\
& =1763.1+475.30 \\
& =2238.4 \mathrm{~W} / \mathrm{K}=2.24 \mathrm{~kW} / \mathrm{K}
\end{aligned}
$$

[^0]: * Represents Numerical \& Subjective Questions.

